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Popisné statistiky

Statisticky vyzkum

@ Statisticky vyzkum popisuje cilovou populaci na zakladé
nahodného vybéru

@ rozliSujeme vybérové a populacni charakteristiky

@ Zprava ze statistického vyzkumu obsahuje

o Cile vyzkumu
Rozsah vyzkumu (poCet pozorovani)
Popisné statistiky kliCovych proménnych

vvvvvv

Vhodné je pfidat nékolik stézejnich grafu
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Popisné statistiky

o Ciselné proménné
@ popisné statistiky polohy — primeér, median, vybrané
percentily (kvartily, extrémy)
@ popisné statistiky variability — rozptyl, smérodatna odchylka,
mezikvartilové rozpéti, koeficient variace
@ popisné statistiky tvaru rozdéleni — Sikmost, Spicatost
o grafické charakteristiky — krabicovy graf, histogram
@ Nominalni proménné
o Ciselné charakteristiky — absolutni a relativni ¢etnosti
o grafické charakteristiky — sloupcovy a kolacovy graf
@ Ordinalni proménné
o lze pouzit jak primér, median atd.
e pro malé pocty kategorii i absolutni, relativni, pfipadné
kumulativni ¢etnosti
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Popisné statistiky tvaru rozdéleni

Popisné statistiky tvaru rozdéleni se pocitaji ze
standardizovanych proménnych, tak zvanych Z-skérua

_X-X
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@ Sikmost — primér ze tretich mocnin z-skr
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@ Spidatost — priimér ze &tvrtych mocnin z-skér(l minus 3
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Popisné statistiky

Popisné statistiky tvaru rozdéleni

Vlastnosti

o Sikmost
e nulova — priblizné symetrické rozdéleni
e kladna — rozdéleni protazené doprava
e zaporna — rozdéleni protazené doleva
@ Spicatost
e nulova — Spicatost normalniho rozdéleni
e kladna — SpicatéjSi nez normalni rozdéleni
uprostied vysSi sloupce, téZké chvosty
e zaporna — plozsi nez normalni rozdéleni
vSechny sloupce podobné vysoké
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Opakovani
Popisné statistiky

Testovani normality

Jak otestovat normalitu
o Grafické testy — histogram a pravdépodobnostni graf

HHHHH gram Q-Qplot

s norm qanties

o Ciselné testy — napt. Shapiro-Wilkilv,
Andersonuv-Darlinglv, Kolmogorovuv-Smirnovay,
Lillieforstv a dalsi
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Testovani normality

NejCastéji pouzivané Ciselné testy normality
@ Shapiro-Wilktiv — test odpovidajici pravdépodobnostnimu
grafu
porovnava, jak si odpovidaji teoretické percentily pro

normalni rozdéleni a percentily namérené pro sledovanou
promeénnou

@ Kolmogorovuv-Smirnoviv — test je zaloZzen na
maximalnim rozdilu empirické distribu¢ni funkce a
distribu¢ni funkce normalniho rozdéleni

@ Andersonuv-Darlinglv — test je zaloZzen na vazeném
primeéru druhé mocniny rozdilu empirické distribu¢ni
funkce a distribu¢ni funkce normalniho rozdéleni
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Znaceni

V prabéhu semestru budeme vyuzivat nasledujici znaceni
@ X, Y nahodné veliCiny
@ n pocCet pozorovani
@ /,j pofadovy index pozorovani / skupiny
@ X, Y; konkrétni realizace veli¢in X, Y

@ p;, g; pravdépodobnosti konkrétnich hodnot u diskrétnich
rozdéleni

@ f(x), f(y) hustoty spojitych veli¢in X, Y
@ f(x,y) sdruzena hustota veli¢in X, Y
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Odhadované charakteristiky

NejCasteji odhadujeme nasledujici charakteristiky
@ Pravdépodobnost nahodného jevu, «;
@ Stredni hodnotu, E(X)
definice
o diskrétni rozdéleni: E(X) = >, Xipi
e spojité rozdéleni: E(X) = [ xf(x)dx
s vlastnostmi:
e E(aX+b)=aE(X)+b
o E(X+Y)=E(X)+E(Y)
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Odhadované charakteristiky

NejCasteji odhadujeme nasledujici charakteristiky

@ Rozptyl, Var(X)
definice

e diskrétni rozdéleni: Var(X) = Z| 1 (Xi — E(X))?pi
e spojité rozdéleni: Var(X) = [ (x E(X))2f(x)dx

s vlastnostmi:
e Var(aX + b) = a2Var(X)
e Var(X+Y) = Var(X) + Var(Y) + 2cov(X,Y)
@ Korelace, cor(X,Y) = ——2X1)__ definice

/Var(X)/Var(Y)
o diskrétni rozdélen: cor(X, Y) = ZiztX_ECI(—EM)pq
V/Var(X)/Var(Y)
J 25 (=E(X) (y—E(Y))f(x,y)dxdy

\/Var(X)\/Var(Y)

e spojité rozdéleni: cor(X,Y) =
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Odhad pravdépodobnosti

@ nejlepsSim bodovym odhadem pravdépodobnosti je relativni
Cetnost p; = n;/n

@ nestranny odhad

@ nahodna veli¢ina p = (p; — ;) /+/7i(1 — 7;)/n konverguje k
normalnimu rozdéleni N(0,1) pro n — o~

@ intervalovy odhad pro pravdépodobnost je

pi(1 — pi)

pitz(1 —a/2) -

@ pro pouziti tohoto intervalu musime mit dostatecné velké n
a pj, ma platit np;(1 — p;) > 9
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Odhad stfedni hodnoty

@ nejlepsim bodovym odhadem stfedni hodnoty je vybérovy
pramér X = >"7 . Xi/n
@ nestranny odhad

@ plati Centralni limitni véta — pro rostouci pocet pozorovani
konverguje rozdéleni vybérového priméru k normalnimu
pro n — oo

@ stfedni chyba priméru je SEM = sd(X)/v/n
@ intervalovy odhad pro primeér je

sd(X)
vn

X+t 1(1-a/2)
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Odhad rozptylu

@ jako bodovy odhad populacniho rozptylu pouzivame
vybérovy rozptyl Var(X) = z[‘ﬂn(%rxf

@ nestranny odhad

@ oznaéme vybérovy rozptyl jako s? a teoreticky rozptyl jako
o2, pak nahodna veli¢ina x = (n — 1)s2/0? ma x?
rozdéleni o n stupnich volnosti

@ x? rozdéleni neni symetrické

@ intervalovy odhad pro rozptyl je

( (n—1)s? (n—1)32>
X5(1 —a/2)" x5(e/2)
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Odhad korelacniho koeficientu

@ nejlepsSim bodovym odhadem korela¢niho koeficientu je
vybérovy Pearsonlv korelacni koeficient

CorX.Y) SR (X = X)(Yi - V)
\/ZI 1 X X \/ZI 1 Y Y)
@ mame-li dvourozmérné normalni rozdéleni a odhadovany

korelacni koeficient |p| < 0.5 pak je interval spolehlivosti
pro korelacni koeficient

1 — Cor(X,Y)?

Cor(X,Y) +2(1 - a/2)— ==
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Odhad korelacniho koeficientu

@ nejsou-li spinény podminky vySe, pak je intervalovy odhad
pro korelacni koeficient odvozen z faktu, ze nahodna
veli¢ina

1 14 Cor(X,Y) 1 1+p p 1
Z‘E'”{pCor(x,Y)} N(ZIn{1fp}+2(nf1)’n73

@ interval spolehlivosti tedy je

tgh(Z +z(1 — a/2)/v/n — 3)

kde tgh(X) = (ex — e—X)/(eX 4 e—x)
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Rozsah vybéru

UrCeni rozsahu vybéru na zékladé pozadované délky
intervalu spolehlivosti

Pfedpokladejme, ze chceme realizovat vyzkum, jehoz cilem je
odhadnout stfedni hodnotu s pozadovanou presnosti. Délka
intervalu spolehlivosti nesmi pfesahnout hodnotu 2A.

Plati

g

Azz(1-a/2)

Rozsah vybéru pak musi splfovat

n> (z(1 - a/Z)%)
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Teoreticky zaklad

Testovani hypotéz

Opakovani:
Pti statistickém rozhodovani testujeme proti sobé 2 hypotézy

@ Nulovou hypotézu, znacime Hy
— patfi sem jedna hodnota

@ Alternativni hypotézu, znacime H,
— patfi sem interval hodnot

Nejbéznéjsi testované hypotézy

@ Hp : mezi skupinami neni rozdil
Hy : mezi skupinami je rozdil

@ Hp : proménné spolu nesouvisi
Hy : proménné spolu souvisi

@ Hy : data maji normalni rozdéleni
H, : data nemaji normaini rozdéleni
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Testovani hypotéz

Na zakladeé testu udélame jedno ze dvou rozhodnuti
@ Zamitneme nulovou hypotézu, pak plati alternativa
@ Nezamitneme nulovou hypotézu

P¥i rozhodovani mazeme udélat chybu

@ chyba prvniho druhu: zamitneme H,, prestoze plati
— znaci se «, a jmenuje se hladina vyznamnosti
— zavaznéjsi z obou chyb
@ chyba druhého druhu: nezamitneme H,, pfestoze neplati
—znaci se 3 a hodnota 1 — 3 se nazyva sila testu
— pfi dané hladiné vyznamnosti chceme test co nejsilngjsi
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Testovani hypotéz

Vyhodnoceni testu je zalozené na porovnani p-hodnoty a
hladiny vyznamnosti (o):

@ p-hodnota < o potom ZAMITAME H,

@ p-hodnota > o potom NEZAMITAME Hj
Definice p-hodnoty

@ pravdépodobnost, Ze za platnosti Hy nastal vysledek, jaky
nastal, nebo jakykoliv jiny, ktery jesté vice odpovida
alternativeé

@ Predpokladejme, Ze plati nulova hypotéza. Jak je potom
pravdépodobny nas vysledek?

@ jinak se nazyv4 aktuélni dosazena hladina testu
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Statisticky test

RozliSujeme nékolik typl testl
@ Parametrické testy
e predpokladaji normalni rozdéleni
o zalozené na odhadu testovaného parametru
o t-testy, klasickd ANOVA, Pearson(lv korelacni koeficient
@ brano v zakladnim kurzu
@ Neparametrické testy
e normalitu nepfedpokladaji
e zalozené na poradich
e Wilcoxonuv test, Kruskal-Wallistv test, Spearman(v
korelacni koeficient, atd.
@ Permutacni testy
e nemaji zadné pozadavky na rozdéleni vstupnich dat
e zaloZené na preusporadani a nahodném generovani z
namefenych hodnot
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Teoreticky zaklad

Neparametricke testy

Ptistup zaloZzeny na poradich

Priklad. UvaZujme namérené veky otcu 30, 28, 36, 38, 28, 26,
29, 37, 25, 50. Data veku rodic¢u byvaji sesikmena a casto
obsahuji odlehlé hodnoty. Prifadime-li hodnotam poradi podle
velikosti, ziskame fadu 6, 3.5, 7, 9, 3.5, 2, 5, 8, 1, 10. Takto
ziskana fada neni sesikmena a nema odlehlé hodnoty.
Nevyhodnou je, Ze tyto testy byvaji slabsi.
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Jednovybérovy test o stfedni hodnoté

Testované hypotézy
@ Hj : stfedni hodnota = g
@ H : stfedni hodnota # 1, nebo < ug, nebo > ug

Podle rozdéleni dat

@ pro normalné rozdélena data se pouziva t-test

@ pro data, ktera nemaji normalni rozdéleni, se pouziva
Wilcoxontv test

e Wicoxonuv test testuje hodnotu medianu
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Wilcoxonudv jednovybérovy test

Postup jednovybérového Wilcoxonova testu
@ spocitaji se rozdily od testované hodnoty X; — mg
@ urci se jejich znaménko
@ uréi se poradi absolutnich hodnot rozdil(
@ spocita se soucet téchto porfadi patficich kladnym rozdilim
Qo

ozna¢me tento soucet ST a obdobné oznaéme S~ soucet pofadi pro
zéporné rozdily, musi platit S* + S~ = n(n+1)/2.

Pro vétsi n Ize uzit transformaci
St —1In(n+1)
\/2n(n+1)(2n+ 1)

kterd ma za platnosti Hy N(0, 1) rozdéleni.

U=



Pokrocilé statistické metody pro biology
Testovani hypotéz
Jednovybérovy test

Wilcoxonudv jednovybérovy test

Priklad. Méjme véky otcu 30, 28, 36, 38, 28, 26, 29, 37, 25, 50 a testujme
hypotézu, Ze median véku otcu je 33 let.

@ H, : median véku otcu je 33 let
@ H,; : median véku otcti neni 33 let
Reseni:
@ spoctéme rozdily Xi — my: -3, -5, 3, 5, -5, -7, -4, 4, -8, 17

@ jejich absolutnim hodnotam pfifadme poradi: 1.5, 6, 1.5, 6, 6, 8, 3.5,
3.5,9,10

@ sectéme kladné (modré) pofadi ST = 21 a zaporné (Cervené) poradf
S =34

@ festova statistika vychazi U = —0.66

p-hodnota 0,51 > «a(= 0.05) a Hy tedy nezamitame

@ stfedni vék otcl se vyznamneé nelisi od hodnoty 33 let
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Rozsah vybéru

Kolik pozorovani je potieba, aby jednovybérovy test splfioval

@ hladina vyznamnosti «

@ silatestu1 — g

@ ocekavany rozdil od nulové hypotézy p1 — uo

@ ocCekavana smérodatna odchylka o

@ g znadi kvantil standardniho normalniho rozdéleni
Budeme potfebovat rozsah vybéru n

s (qm —a/2) +qt 5)J>2
H1 — Ho

Priklad. Pro jednovybérovy t-test na hladiné vyznamnosti 0.05, jehoZ sila by
byla 0.9 proti rozdilu od nulové hypotézy o velikosti 4, pfi oCekavané
smérodatné odchyice 7, potfebujeme n hodnot, kde n je

N> <q(1 - 0.0522) + q(o.9)7)2 300

Pro Wilcoxon(v test potfebujeme o 15% pozorovani vice.
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Parovy test

Test porovnavajici dva zavislé vybéry, (data, ktera tvofi pfirozené
pary)
Testované hypotézy

@ Hy : stfedni hodnota rozdilu pard = g

@ H, : stfedni hodnota rozdilu # pg, nebo < g, nebo > uo
Postup parového testu

@ spocitam rozdily mezi vSemi pary

Ri=X-Y,

kde X; a Y; jsou parova méreni

@ testuje se stfedni hodnota rozdili R; jednovybé&rovym testem

Priklad. Porovnavam vék otce a matky, srovnavam silu pravé a levé ruky,
srovnavam méreni pred a po podani néjakého léku, atd.



Pokrocilé statistické metody pro biology
Testovani hypotéz
Dvouvybérovy test

Dvouvybérovy test

Porovnava dva nezavislé vybéry (pozorovani nemohu naparovat).
Testované hypotézy:

@ Hy : rozdil stfednich hodnot = g
@ H, : rozdil stfednich hodnot # 1, nebo < pg, Nnebo > g
Podle typu dat:

@ normalni data a shodné rozptyly: dvouvybérovy t-test pro
shodné rozptyly

@ normalni data a riizné rozptyly: dvouvybérovy Welchav t-test

@ data, ktera nemaji normalni rozdéleni: dvouvybérovy
Wilcoxonlv (Mann-Whitney(v) test
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Wilcoxonav dvouvybérovy test

Postup dvouvybérového Wilcoxonova testu

@ oba vybéry spoji do jednoho sdruzeného vybéru

@ sdruzeny vybér se usporada podle velikosti a kazdé
pozorovani dostane své poradi

@ v kazdém vybeéru zvlast se vypocte soucet poradi a
nasledné i primérné poradi

@ pokud jsou si primérna poradi podobnd, vybéry se mezi
sebou vyznamné nelisi
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Wilcoxonav dvouvybérovy test

Technicky vypocet: oznacme Ty, T, soucet poradi v prvnim,
respektive druhém vybéru. Dale vypocteme

m(m+1)
2

no(np+1)

Uy =nino + 5

=Ty, Uz =nyno + - Tz,
kde ny, no jsou rozsahy jednotlivych vybéru. Presny test
porovnava hodnotu min(Uy, Us) s kritickou hodnotou.

Asymptoticky plati, Zze

ma za platnosti Hy N(0, 1) rozdéleni.
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Wilcoxonav dvouvybérovy test

Priklad. Chceme porovnat vysledky testts studenti v Usti nad Labem a v
Liberci. Studenti v Usti dostali bodova ohodnoceni 45, 79, 81, 56, 53, 77.
Studenti v Liberci ziskali ohodnoceni 76, 62, 84, 80, 41, 79, 66.
Testované hypotézy

@ Hj : Studenti v Usti a v Liberci jsou stejni
@ H, : Studenti v Usti a v Liberci se lisi.
Reseni:
@ srovname vsechny hodnoty do fady
41, 45, 53, 56, 62, 66, 76, 77, 79, 79, 80, 81, 84

@ hodnotam prifadime poradi
1,2,3,4,5,6,7,8 9.5, 9.5 11,12, 13

@ vypocteme statistiky Ty = 38.5, T, =525, U; =245 U, =175 a
U =05

@ p-hodnota = 0.6678 > « a Hy nezamitame
@ neprokdzal se rozdil mezi studenty v Usti a v Liberci
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Rozsah vybéru

Kolik pozorovani je potfeba, aby dvouvybérovy test splfioval
@ hladina vyznamnosti «
@ silatestu1 — g
@ ocekavany rozdil mezi vybéry p1 — po
@ ocCekavana smisena smeérodatna odchylka o
@ g znadi kvantil standardniho normalniho rozdéleni
Budeme potfebovat rozsah vybéru n
n>2 (qm —a/2) +q(1 ﬂ)g)z
A — 2

Priklad. Pro dvouvybérovy t-test na hladiné vyznamnosti 0.05, jehoZ sila by
byla 0.9 pfi rozdilu primérd mezi skupinami 4 a o¢ekdvané smérodatné
odchyice 7, potfebujeme n hodnot, kde n je

N> <q(1 - 0.0522) + q(o.9)7)2 643

Pro Wilcoxon(v test potfebujeme o 15% pozorovani vice.
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Analyza rozptylu — ANOVA

Porovnavame-li stfedni hodnotu ve vice nez dvou nezavislych
vybérech.
Testované hypotézy:

@ Hj : vSechny stfedni hodnoty jsou stejné

@ H, : alesponi jedna stfedni hodnota se lisi
Myslenka spociva v porovnani variability mezi vybéry s variabilitou v
ramci vybérd.
Podle typu dat:

@ normalni data a shodné rozptyly: klasickd ANOVA pro shodné

rozptyly

@ normalni data a r(izné rozptyly: Welchova ANOVA

@ data, ktera nemaji normalni rozdéleni: Kruskal-Wallisova ANOVA
Priklad. Byla méfena koncentrace médi v téle ryb. Porovnavano bylo 5

rybnikd, kde z kazdého byl vyloven vzorek alespori 10-ti ryb. Lisi se od sebe
tyto rybniky?
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Kruskal-Wallistlv test

Postup Kruskal-Wallisova testu
@ obdoba s dvouvybérovym Wilcoxonovym testem
@ srovname vSechny nameérené hodnoty do rady
@ urcime jejich poradi
@ pro kazdy vybér seCteme poradi a soucet oznacime
Ti,i=1,...,k, kde k je poCet vybéru
@ testova statistika

k
12 T?
= — -4 —3(n+1
Q n(n+1)§ n; (n+1)

ma za platnosti Hy x2-rozdéleni
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Dunndv test

Parové srovnani pro data, kter4 nemaji normalni rozdéleni

@ porovnani véech dvojic vybérd pfi udrzeni celkové hladiny
vyznamnosti

Testova statistika porovnavajici i-ty a j-ty vybér je

N (k1)

n(n+1) (1 1
2 (3 +3)

L_T
n;j nj

@ statistika ma za platnosti Hy N(0, 1)-rozdéleni

@ pro vicenasobné porovnani se pak pouziji upravené p-hodnoty,
aby byla udrzena celkova hladina testu
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Dunndv test

V pripadég, Ze v datech jsou shodné hodnoty a je tedy tfeba délit
pofadi, pouzivéa se statistika

o (
\/n(n+1)—z,'1(3,3—3/)/(’7—1) (1 T 1)
12 nj nj

kde S je pocet /-té shodné hodnoty.

LT

n; nj

@ plati pro ni stejnd pravidla jako na slidu vySe
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ANQOVA pro opakovana méreni

Porovnava nékolik zavislych vybéru.
Priklady
@ Ochutnavka jogurtu: 20 lidi ochutnava a hodnoti kazdy
v8ech 5 porovnavanych vzorkud jogurtu.

@ Meéreni opakovana v ¢ase: chceme hodnotit vyvoj
pacientova zdravotniho stavu v ¢ase. Pro 30 pacientd
délame opakovana méreni jaternich testl.

Testované hypotézy
@ Hy : Stredni hodnoty vybéru se nelisi
@ H, : Stfedni hodnoty vybeéra se lisi
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ANQOVA pro opakovana méreni

Vyhodnoceni hypotéz probiha pomoci porovnani variability
mezi vybéry s variabilitou zbytkovou. Zbytkova variabilita se od
variability v ramci vybér( liSi tim, Ze je sniZzena o variabilitu
zpUsobenou rozdily mezi jedinci. Konkrétné se tato zbytkova
variabilita ziska nasledovné

k n;
SST = YD (X -X.)2=

i=1 j=1

k .
= 2 X XP 43D (X - X =
i=1 i=1 j=1

= SSA+ SSe

SSz = SSe—SSS=85Se—kY (X;-X.)?
j=1

Test je pak zalozen na porovnani SSA a SSz.
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Friedmanuv test

Porovnava zavislé vybéry, které nemaji normalni rozdéleni.
Postup Friedmanova testu:

@ urcime poradi hodnot v ramci kazdého jedince
@ tato poradi se secCtou pro kazdy vybér zvlast
@ oznacme soucet téchto pofadi T;,i=1,...,k
@ testova statistika

k 2
12n T, k+1
() PS <n_2>

za platnosti Hy ma tato statistika y2-rozdéleni o k — 1
stupnich volnosti.
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Pearsonulv korelacni koeficient

Je-li cilem vyzkumu zjistit, zda spolu linearné souvisi dve
Ciselné proménné, pouziva se korelacni koeficient.
Pearsontv korelacni koeficient vypocteme jako

Corx,y)= _CVXY)  _ ELXi-X)(¥i-Y)
; Var(X)Var(Y) \/Zin:1 (X — X220 (Y, — V)2

Libovolny koreal¢ni koeficient nabyva hodnot mezi-1 a1 a
plati, ze

@ absolutni nepfima zavislost ma Cor(X,Y) = —1
@ linearni nezavislost/ nekorelovanost ma Cor(X,Y) =0
@ absolutni pfima zavislost ma Cor(X,Y) = 1
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Pearsonulv korelacni koeficient

O statistické vyznamnosti zavislosti rozhodujeme testem
@ Hj : korelaéni koeficient = 0
@ H, : korelaéni koeficient # 0, > 0, < 0

Za platnosti nulové hypotézy plati, Ze testova statistika

B Cor(X,Y) B
= /1= Cor(X,Y)2 Vin-2)

ma t-rozdéleni o n — 2 stupnich volnosti.
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Pearsonulv korelacni koeficient

V pfipadé, ze chceme testovat konkrétni hodnotu korelacniho
koeficientu, tedy

@ Hj : korelaéni koeficient = pq
@ H : korelaéni koeficient # pg, > po, < po
pak se vyuziva tzv. Fisherovy Z-transformace, ktera fika, ze

_1 1 4 Cor(X,Y) 1 1+p 1
Zz'”{1—00r(x,v)} N(z'”{1—p}’n—3>

kde p je skute¢na/ teoreticka hodnota korelacniho koeficientu.




Pokrocilé statistické metody pro biology
Testovani hypotéz
Korelaéni koeficient

Pearsonulv korelacni koeficient

Pomoci Z-transformace je mozné porovnavat i dva korela¢ni
koeficienty mezi sebou.
Testuji se hypotézy

@ H : korelaéni koeficienty jsou stejné p1 = po
@ H, : korelaéni koeficienty se lisi p1 # po

Testova statistika
Zi — 2>

/_1 1
ny—3 + np—3

ma pfi shodé porovnavanych korelacnich koeficientd N(0, 1)
rozdéleni.

U=
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Testovani hypotéz
Korelaéni koeficient

Spearmanuyv korelacni koeficient

Pokud chceme otestovat, zda spolu souvisi dvé Ciselné
proménné, které nemaji normalni rozdéleni (ale stale se jevi
jako spojité), pouziva se Spearmanuv korelacni koeficient.
Stejné jako dal$i neparametrické testy je zalozen na poradich.
Postup

@ Hodnoty kazdé proménné prevedu na poradi.
@ Spocita se Pearsonuv korelacni koeficient pro tato poradi.

v v,

Spearmanuyv korelaéni koeficient méfi monotonni vztah dvou
veli¢in. Je tedy obecnéjSi nez Pearson(v korelacni koeificient,
ktery méfil jen linearni zavislost.
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Kendalltv korelacni koeficient

Pokud chceme zjistit, zda je linearni vztah mezi dvéma usporadanymi
kategorickymi proménnymi, pouziva se Kendalltiv korelacni
koeficient (Kendallovo 7).

OznaCme dvé porovnavané proménné X a Y. Nyni uvazujme
vSechny dvojice naméfenych hodnot X;, Y; a pokud pro danou dvojici
plati, ze X; < X;&Y; < Yjnebo X; > X;&Y; > Y;, pak oznacme tuto
dvojici jakou souhlasnou, pokud plati X; < Xj&Y; > Y; nebo

Xi > Xj&Y; < Y}, oznaCme ji za nesouhlasnou.

Kendallovo 7 je zaloZeno na rozdilu po¢tu souhlasnych (ns) a poctu
nesouhlasnych (n,) dvojic.
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Kendalltv korelacni koeficient

Konkrétné je Kendallovo 7 definovano jako

ns — np
T= = sign(X; — Xj)sign(Y; — Y;
. (n_1 Zj g sign(Y; - Y))
Rozptyl tohoto koeficientu je
2(2n+5
Var(r) = 951(n - 1;

a testova statistika 7/Var(7) ma za platnosti nulové hypotézy
asymptoticky N(0, 1) rozdéleni.



Pokrocilé statistické metody pro biology
Testovani hypotéz
Korelaéni koeficient

Kendallovo 7

VySe uvedeny koeficient funguje dobre, pokud v datech nejsou stejné
hodnoty. Pokud se stejné hodnoty vyskytnou, pouzivaji se nasledujici
obdoby tohoto koeficientu.

Pro proménné se stejnym poétem moznych hodnot

ns — Ny
V(no —n)(no — np)’

kde ng =n(n—1)/2,ny =3 ti(ti — 1)/2 a t; jsou poCty shodnych
hodnot u proménné X, ny = ", ui(u; — 1)/2 a u; jsou poCty shodnych
hodnot u proménné Y.

Pro proménné s riiznym poc¢tem moznych hodnot

B =

o = 2(ns — np)
="
n? o=

kde m je minimalni po€et hodnot u obou proménnych.
Vypocet rozptyll a naslednych testovych statistik pro 75 a 7¢ je
slozity. Pfenechme ho tedy softwardm.
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Linearni regrese

Linearni regrese zkouma pficinnou zavislost jak jedna
proménnd zavisi na jiné/ jinych.
Oznacme
@ nezavisle proménna X — pricina
@ zavisle proménna Y — dlsledek
Predpokladame linearni model ve tvaru

Yi=0Bo+ B Xi+ e
kde

@ Y, jsou hodnoty zavisle proménné

@ X; jsou hodnoty nezavisle proménné
@ [ je absolutni ¢len

@ (4 je linearni ¢len

@ ¢ jsou nahodné chyby
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Linearni regrese

Graficky popisujeme pomoci bodového grafu, ale neni jedno,
ktera proménna je na které ose

@ na x-ovou osu se kresli nezavisle proménna
@ na y-ovou osu se kresli zavisle proménna

Bodovy graf zavislosti
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Linearni regrese

Odhad probihd metodou nejmensich étvercu, ktera
minimalizuje soucet druhych mocnin residui

n n n

. 2 . 7\ 2 . 2
m|n; R; = mln;(Yi - Y) = g}’la 2 (Yi = (bo + b1 Xi))
@ R; jsou residua (rozdil skute€¢né a predikované hodnoty)
@ Y; jsou odhady, nebo téz predikce,
@ bg, by jsou odhady regresnich koeficientt (absolutni a

linearni clen)
@ predikci hodnoty Y v bodé xg ziskame jako

\A/O = by + b1 X

napr. ze znamé vysky muzeme predikovat ocekavanou
hmotnost
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Linearni regrese

Koeficient determinace

Y;
R?=1-— S VP = cor(X,Y)?
i (Yi—Y)2
@ kolik procent variability zavisle proménné se modelem vysvétli
@ tedy z kolika procent zavisle proménna zavisi na X a z kolika na
nécem jiném

Testované hypotézy testu nezavislosti.

@ Hj : Proménna Y na proménné X linearné nezavisi, 8y = 0

@ H,; : Proménna Y na proménné X linearné zavisi, 51 # 0

Test je zaloZen na faktu, ze by /se(by) ~ N(0, 1), kde by je odhad
linearniho €lenu §; a se(by) je jeho stfedni chyba.
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Linearni regrese

Priklad. Pocitejme zavislost hmotnosti na vysce u
jedenactiletych déti.
@ odhadnuta regresni zavislost Y; = —73.81 + 0.75X;
@ stfedni chyba odhadu linearniho ¢lenu 0.04

@ testovou statistiku 18.76 jsme porovnali s kvantilem
t-rozdéleni trpo(1 — 0.975) = 1.97

@ p-hodnota testu vysla < 2.2 x 107", coZ je mensi nez
a =0.05

@ zamitdme nulovou hypotézu nezavislosti
@ Koeficient determinace vySel 0.6153.

Zaver: U muzl s jednim rizikovym faktorem ischemické
choroby srdecni zavisi hmotnost na vySce. Zavislost je pfiméa a
vysvetli se ji 62% variability zavisle proménné.
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Linearni regrese

| linearni regrese ma své predpoklady
@ Mezi proménnymi je skuteCné linearni vztah
@ Residua jsou nezvisla
@ Residua maji normalni rozdéleni
@ Stabilita rozptylu
@ V datech nejsou vlivna pozorovani

Jednotlivé predpoklady mizeme hodnotit bud’ na zaklade
znalosti dat (nezavislost), nebo grafickymi pfipadné Ciselnymi
testy.
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Linearni regrese

Ukazka grafickych testl predpokladu

© .
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Linearni regrese

Ukazka grafickych testl predpokladu
@ 1. graf: linearni vztah — Cervena ¢ara nema mit trend
na grafu je do oblouku, lineérni zavislost neni dostatecna
@ 2. graf: normalita residui — body maji leZzet na pfimce
na grafu se v horni ¢asti odchyluji, normalita neni splnéna
@ 3. graf: stabilita rozptylu — Cervend ¢ara nema mit trend
na grafu roste, rozptyl neni stabilni
@ 4. graf: body nemaji pfekrocit meze (Carkované kfivky)
na grafu vSe v poradku
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Linearni regrese

Model mnohonasobné linearni regrese ma tvar

Y = Bo+ B1 X1 + BoXo + B3 Xz + ...+ Bk Xk + €

Priklad. Zkoumame, o kolik stoupne/klesne voda v fece v
zavislosti na srazkach, na teploté, na typu pudy, na nasycenosti
pudy, na nadmorské vysce, atd.

Nékteré proménné maji na zavisle proménnou vétsi vliv, jiné
mensi.
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Linearni regrese

Optimalni model, ve kterém budou jen proménné s vyznamnym
vlivem, hledame pomoci krokové regrese.

@ Dopiedna (forward): za¢ina s modelem bez nezavisle
proménnych a v kazdém kroku pfida jednu s nejvétSim,
statisticky vyznamnym vlivem

@ Zpétna (backward): za¢ina s Uplnym modelem a v kazdém
kroku vynecha jednu proménnou s nejmensim, statisticky
nevyznamnym vlivem

@ Kombinace obou predchozich (both sided): za¢ina s
prazdnym modelem bez nezavisle proménnych a v kazdém
kroku pfida jednu proménnou s nejvétsim, statisticky
vyznamnym vlivem a poté zkontroluje, zda nelze jinou
proménnou vynechat.

Cilem je ziskat model, kde budou nezavisle proménné pouze
se statisticky vyznamnym vlivem.
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Linearni regrese

Nezavisla kategoricka proménna v regresnim modelu.

@ kategorickou proménnou s k kategoriemi, reprezentujeme
pomoci kK — 1 pomocnych dummy proménnych

@ dummy proménné jsou 0-1 proménné

X; = 1...nastalai-ta kategorie
= 0...jinak
@ k-ta kategorie nastane, pokud X; =... = Xx_1 =0

@ kazda z dummy proménnych ma svou p-hodnotu

@ vyznamnost vlivu celé kategorické proménné se fesi pres
tabulku analyzy rozptylu
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Linearni regrese

Interakce popisuji zplsob, jimz se dveé nezavisle proménné
ovlivAuji pfi jejich sou¢asném vlivu na proménnou zavislou.

Priklad. Do vybéru bylo zafazeno 222 jedendactiletych déti a
bylo u nich zjistovano, jak zavisi procento tuku v téle na jejich
vaze a na sportu, kterému se vénuji.

Bodovy graf zavislosti
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Mnohonasobna linearni regrese

Interakce jsou vidét jiz z grafu, do kterého se vykresli zavislost
Ciselnych proménnych zvlast pro kazdou kategorii proménné
kategorické. Pokud interakce v datech jsou, pak se zobrazi
riiznobézné primky. Pokud interakce v modelu nejsou, ale
skupiny se od sebe liSi, zobrazi se rovnobézné pfimky. Pokud
rozdil mezi skupinami neni, pfimky splyvaji.

Priklad. V modelu interakce existuji - zavislost procenta tuku
na hmotnosti je jina pro ledni hokejisty a pro ostatni.
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Linearni regrese

Informacni kritéria hodnotici model.

Kazdé z nize uvedenych kritérii je zaloZeno na vérohodnosti modelu
(L - likelihood), tj. na ukazateli, jak dobfe model kopiruje data. Tato
vérohodnost se dale penalizuje pottem parametr( pouzitych v
modelu, k. Plati, ze ¢im mensi hodnota kritéria, tim lepsi je model.

@ Akaikeho informacni kritérium (AIC):
AIC = 2k — 2In(L)

@ Upravené Akaikeho informacni kritérium (AICc) pro malé
vzorky:

2k(k+1)
n—k-—1
@ Bayesovskeé informacni kritérium (BIC):

AlCc = AIC +

BIC = In(n)k — 2In(L)
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Co délat, kdyz nejsou splnény predpoklady na rozdéeleni
nahodné chyby modelu?

@ Zavisle proménna je spojita — pouzijeme pro zavisle
proménnou transformaci, ktera ji posune k normalnimu
rozdéleni. Nejcastéji se pouziva prirozeny logaritmus,
nebo Box-Coxova transformace.

@ Zavisle proménna je dvouhodnotova (0-1) — pouZije se
logisticka regrese.

@ Zavisle proménnou tvoii po€ty — pouzije se Poissonova
regrese.

@ Zavisle proménna je ordinalni — pouzije se ordinalni
regrese.
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Logisticka regrese

Zavisle proménna je dvouhodnotova

pravdépodobnost hodnoty 1 oznacme =

modelujeme, jak 7 zavisi na nezavisle proménnych

s
1. exp{Bo + 1 X1 + oXo + B3 X3 + ... + Bk Xk + €}
parametr :7— se jmenuje $ance a pocita se jako
pravdépodobnost, Ze jev nastal, vs. pravdépodobnost, ze jev
nenastal

v praxi se modeluje logaritmus $anci pomoci klasické linearni
regrese

In(1 Wﬂ) = Bo+ B1 X1 + BaXo + BaXs + ... + BiXi + €

funkce na levé strané rovnosti se jmenuje logit link
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Logisticka regrese

Pokud z odhadnutého modelu pak chceme zpétné ziskat vztah
pro pravdépodobnost 7, pouzijeme

o exp{fo + B1 Xy + BoXo + B3 X3 + ... + B Xk}
1+ exp{Bo + B1 X1 + B2 Xo + B3 Xz + ... + Bk Xk}

Interpretace koeficientu j5;:

"Sance vlastnost mit mi p¥i nardstu X; o 1 vzroste primérné
exp 31 krat p¥i stejnych hodnotach ostatnich nezavisle
proménnych."
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Logisticka regrese

Priklad. UvaZujme 150 cestujicich na Titaniku. Ke kaZzdému
cestujicimu mame uvedeno pohlavi, vék, tridu, ve které
cestoval a informaci, zda se zachranil nebo ne. Nasledujicic
tabulky ukazuji, jaci cestujici se zachranili, a jaci se utopili.

Muz Zena Dospély Dité
Prezil 23 26 PreZil 46 3
Neprezil | 89 12 Neprezil 97 4
1. tfida 2. tfida 3. tfida Posadka
Prezil 11 10 11 17
NepreZil 2 12 39 48
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Logisticka regrese

Priklad. Oznacme = pravdépodobnost, Ze dotycny preZil. Odhad
modelu logistické regrese vysel

In ( U ) = 1.45-—1.58(2.tr) — 3.04(3.tr) — 1.72(posadka) +

1—7

+2.32(zena) — 0.9(dospely)

Jako vyznamné vysly proménné pohlavi (p = 2.55 x 1078) a tfida
(p=0.0014) v niZ dotyény cestoval, konkrétné se vyznamné lisi tfeti
tfida od prvni tfidy a na hladiné vyznamnosti 0.1 i posadka od prvni
tfidy.

Zeny maji exp(2.32) = 10.17 krét vétsi $anci na preZiti nez muzi pfi
ostatnich parametrech neménnych.

Cestujici v prvni tfidé maji 1/ exp(—3.04) = 20.9 krét vétsi sanci
preZit neZ cestujici ve treti tfidé pfi ostatnich parametrech
neménnych. Cestujici v prvni tfidé maji 1/ exp(—1.72) = 5.6 krat
vetsi sanci preZit neZ posadka pfi ostatnich parametrech neménnych.
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Zobecnéné jednorozmérné metody

Z&klady mnohorozmeérné statistiky

Pfedpokladejme, Zze nemame jednu proménnou X, ale vektor
proménnych X = (Xq, Xo,..., Xx)".

v v

Priklad. Mérime nékolik fyzickych parametrd jedince: vyska,
vaha, krevni tlak, vitalni kapacitu plic, atd. Kazdy Zak na
vysvédceni dostane znamku z nekolika predmeétu: cestina,
matematika, zemépis, pfirodopis, atd.

@ Namisto jedné stfedni hodnoty . a jednoho rozptylu o
méame vektor stfednich hodnot = (u1,..., k)" @
variancni matici ¥ = (o)

@ odhadujeme je pomoci vektoru praméri X = (X1,..., Xx)"
a matici S = (s;j), kde s;; = cov(X;, X;) proi # j a
sii = Var(X;)
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Zobecnéné jednorozmérné metody

Z&klady mnohorozmeérné statistiky

Zobecnéni zakladnich statistickych metod.
@ Dvouvybérovy test = Hotellingav test
@ Analyza rozptylu (ANOVA) = MANOVA
@ Korelacni koeficient = Kanonické korelace

@ Linearni regrese = Mnohorozmeérna linearni regrese,
kde zavisle proménna ma vice slozek.
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Zobecnéné jednorozmérné metody

Hotellingav test

Porovnavam stredni hodnotu ndhodného vektoru ve dvou
populacich. Pfredpokladam nezavisla méreni. Testuiji

@ Hj : vektory stfednich hodnot se rovnaji
@ H, : vektory stfednich hodnot se nerovnaji
Testov4 statistika ma tvar

T2 = M2y _v)Trix-Y)
ny + no
s (N =1+ (e —1)Xs
n+n—2

Testova statistika ma za platnosti Hy Hotellingovo T2-rozdéleni s k a
ny + np — 2 stupni volnosti. Toto Ize pfevést na F-rozdéleni.

Obdobné Ize zkonstruovat i testovou statistiku pro jednovybérovy test.
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Zobecnéné jednorozmérné metody

MANOVA

P¥i srovnani vice nezavislych vybérl se opét testuji hypotézy
@ Hy : vektory stfednich hodnot se rovnaji
@ H; : vektory stfednich hodnot se nerovnaji
Stejné jako u jednorozmérné analyzy rozptylu, i ve
vicerozmeérné verzi je vyhodnoceni hypotéz zaloZzeno na
porovnani variability vysvétlené a nevysvétlené. Existuje
nékolik testovych statistik, kde vSechny pracuji s maticemi

p n
W= >3- Y)Y - V)

i=1 j=1
p — J— — —
B = Y m(Yi-Y)(Y;-Y)
i=1

kde p znadi pocet vybér a Y; pramér i-tého vybéru.
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Zobecnéné jednorozmérné metody

MANOVA

Testové statistiky pro MANOVu.
@ Wilkovo lambda

Ay = det (W+B>

B
/\p:tr<W+B>

@ Hotellingovo lambda

B

pfi porovnani dvou vybéra se vSechny tyto statistiky smrsti na
Hotellingiv dvouvybérovy test.

@ Pillayova stopa
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Zobecnéné jednorozmérné metody

Kanonické korelace

Mame dvé skupiny proménnych X a Y méfenych na stejnych
jedincich a chceme zjistit, zda mezi témito skupinami je néjaky
vztah, pfipadné jaky.

Priklad. UvaZujme advé rizné skupiny lékarskych vysetreni a
hodnotime, zda obé tyto skupiny méri to samé, nebo ne.

Kanonickou korelaci ziskame jako maximalni korelaci mezi
dvéma proménnymi reprezentujicimi skupiny X a Y. Tyto
proménné se nazyvaji kanonické proménné.
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Zobecnéné jednorozmérné metody

Kanonické korelace

Hledani pard kanonickych proménnych
@ kanonickd proménna je linearni kombinace proménnych ve
skupiné
@ ziskame k parl kanonickych proménnych, kde k je pocet
proménnych v mens§i skupiné
@ prvni par kanonickych proménnych

Kii=a' X, Koy =b'Y
pro néz plati
cor(Ky1,Ka1) = max{cor(aX,b"Y)}

@ druhy par kanonickych proménnych je kolmy k prvnimu a
opét je pro néj korelace maximalni,

@ kanonické korelace jsou korelace mezi pary kanonickych
proménnych
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Metoda hlavnich komponent (PCA)

Snizeni poCtu proménnych v mnohorozmérném prostoru

@ v mnohorozmérném prostoru byvaji proménné vzajemné
korelované

@ tyto proménné davaji podobnou / stejnou informaci

@ proménné podle podobnosti slou¢ime do skupin a kazdou
reprezentujeme jednou promeénnou

@ pouzijeme jen maly pocet novych proménnych s velkym
mnozstvim informace
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Metoda hlavnich komponent (PCA)

Transformace plvodnich proménnych do novych
Y=XP

kde
@ X je centrovava matice vstupnich hodnot (centrovani =
odecCet priméru),
@ Y je vystupni - cilova matice
@ P je matice transformacnich vektor(i. Matici P ziskame
pomoci rozkladu korelaéni matice vstupnich dat C

C=PAPT

@ A je matice vlastnich Cisel korelaéni matice C
@ matice P obsahuje vlastni vektory korelacni matice C.
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Metoda hlavnich komponent (PCA)

Vysledna matice hlavnich komponent Y ma nasleduijici
vlastnosti

@ jeji vektory jsou vzajemné kolmé (nezavislé)
@ fadi se podle variability: od vektoru s nejvétsi variabilitou k

v v

@ obsahuje veSkerou informaci, kterou obsahovala puvodni
data
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Metoda hlavnich komponent (PCA)

Cely postup si mizeme predstavit nasledovné
@ predstavime si mnohozmérna data v prostoru
@ daty prolozime vektor ve sméru s nejvétsi variabilitou
@ tak ziskame prvni hlavni komponentu (PC)

@ hledame vektor, ktery by byl k prvnimu kolmy a opét byl ve
sméru s nejvetsi variabilitou

@ ziskame druhou hlavni komponentu

@ hledame vektor, ktery by byl kolmy k prvnim dvéma a byl
ve sméru s nejvetsi variabilitou

@ ziskame treti hlavni komponentu

@ posledni dva kroky opakujeme, dokud mame body ve
volném prostoru
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Metoda hlavnich komponent (PCA)

Vstupni data poté reprezentujeme mensim mnozstvim novych proménnych
(hlavnich komponent) tak, abychom ztratili co nejméné informace / variability.
Jejich optimalni pocet je poCet vlastnich &isel vétsSich nez 1. Graficky
znéazornéno pomoci tzv. "Scree plot".

Scree plot
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Graf zobrazujici hodnoty pro prvnich 10 hlavnich komponent ziskanych z
puvodnich 24 proménnych. Optimalni poet hlavnich komponent je 5.
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Faktorova analyza

Nevyhodou hlavnich komponent je, Ze nemaji pfirozenou
interpretaci. Pokud tedy chceme ziskat mensi pocet
proménnych, které jsou interpretovatelné, pouziva se
faktorova analyza.
Hlavni myS$lenka faktorové analyzy pochéazi z psychologie:
@ na kazdého pusobi k neméfitelnych faktorl
@ podle toho, jak na nas pusobi, my reagujeme
@ podle reakci na p podnétl se snazime identifikovat
puvodni faktory
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Faktorova analyza

Metoda vychazi z metody hlavnich komponent. Identifikujeme k
hlavich komponent, a ty pak "rotujeme", dokud nedostanou
néjakou pfirozenou interpretaci. K rotaci je mozné pouzit
nékolik metod, nejCastéji se pouziva varimax.

Priklad. Déti nosi ze skoly vysvédceni. Podle znamek, pak Ize
identifikovat dvé skupiny studentu, jedna z nich ma dobré
znamky v predmetech matematika, fyzika, prirodopis, zemépis,
chemie, druha ma dobré znamky v pfedmeétech cestina,
anglictina, déjepis, obcanska vychova. Faktory, které na né
pusobi jsou pak prirodni védy a humanitni obory.
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Faktorova analyza

Vychazime z rovnice obdobné jako u analyzy hlavnich
komponent

X=LF+¢
kde
@ X je centrovana matice namérenych dat
@ L jsou tzv. loadings
@ F jsou hledané faktory
@ ¢ jsou nahodné chyby
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Faktorova analyza

Predpoklady faktorové analyzy

Aby bylo mozné faktory odhadnout, musi platit

F a ¢ jsou nezavislé
E(F) = 0 a Cov(F) = |, kde | je jednotkova matice,
tj. faktory maji nulovou stfedni hodnotu, jednotkovy rozptyl
a jsou nezavislé
E(¢) = 0 a Cov(e) = &2,
tj. ndhodné chyby jsou nezavislé, stejné rozdélené s
nulovou stfednin hodnotou a konstantnim rozptylem o2
Cov(X) = LL' + o2, tedy
o Var(Xj) =& + (2 + ...+ 2 + 02
o COV(Xi7 Xj) = &15]1 + figfjg +...+ fimfjm
COV(X, F) =1L, tedy COV(Xi, FJ) = Zij
kde /; jsou prvky matice L
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Diskriminacni analyza

Mame mnohorozmeérnd data z nékolika riznych, znamych
populaci a chceme najit nejlepsi mozny zpulsob, jak podle
dostupnych informaci rozlisit skupiny mezi sebou.

Priklad. UvaZujme pacienty s riznymi nemocemi a méjme ke
kazdému skupinu lékarskych testi. Chceme pak najit zptsob,
jak zaradit pacienta do do spravné skupiny (urcit spravné
nemoc, kterou ma) jen na zakladé vysledku testu
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Diskriminacni analyza

Intuitivni postup jak pro pacienta ur€it spravnou skupinu

@ pro kazdou skupinu spocitame pramérny vektor za
vSechny proménné (Iékarské testy)

@ nového pacienta zaradime do skupiny, ktera bude mit
prameérny vektor nejblize k pacientovym vysledkim
Jak dobré je ur€ené rozhodovaci pravidlo?
@ data rozdélime na 2 ¢asti: trénovaci a testovaci
@ na trénovaci ¢asti se naucime diskriminacni pravidlo
@ na testovaci ¢asti ho vyzkousime

@ urCime, v kolika procentech pripadl jsme se na testovaci
sade trefili (klasifikace)
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Diskriminacni analyza

Vybér mezi dvéma skupinami
@ uvazujme pouze dvé populace X a X» s praméry
X1,nai2,n-
@ nové pozorovani X chceme priradit k jedné z téchto
populaci

@ vydalenost X od primérnych vektori méfime
Mahalanobisovou vzdalenosti

D(X,¥) = /(X — X)TV-1(X — X)

kde V znaci varia¢ni matici dat
@ plati-i B B
D?(X, X1 5) < D?(X,Xz.p),
prifadime pozorovani k prvni populaci, v opacném pripadé
ke druhé
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Diskriminacni analyza

@ aritmetickymi operacemi Ize ziskat vektor
b= 371 (¥1,n - X2,n)7

@ rozhodovaci pravidlo pak je fika, ze pokud

Titn + x2,n

T —
b'X—-b 5

K
= biX;j—by>0
i=1
pak pozorovani patfi do prvni populace
@ pridani apriornich pravdépodobnosti/ velikosti skupin
(napf. relativni cetnosti nemoci v populaci)

@ oznaCme 71 a mp apriorni psti skupin, pak
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Shlukova analyza — hierarchické metody

Hledame v datech predem neznamé skupiny tak, aby
@ rozdily mezi skupinami byly co mozna nejvétsi,
@ v ramci skupiny, aby byly hodnoty co nejpodobnéjsi,
Shlukovani je zaloZzené na méreni vzdalenosti.
Hierarchické shlukovani
@ postupné shlukovani od jednotek po jednu velkou skupinu
@ nejprve kazda jednotka tvofi samostatnou skupinu

v v
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Shlukova analyza — hierarchické metody

Hierarchické shlukovani vyuziva euklidovskou vzdalenost
Existuji rizné typy hierarchického shlukovani

@ vzdalenost stfedl (primérd) — average linkage
@ vzdalenost nejvzdalengjsich bodl — complete linkage
@ minimalizace variability v ramci skupin — Ward linkage
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Shlukova analyza — hierarchické metody

Graficky se proces shlukovani znazorniuje pomoci
dendrogramu.

Cluster Dendrogram

100 150

;

00 CU=C=COTCECC T
Pl Syt et =
RSt %sﬁgﬂr‘—’%gg—wwﬁgc
TU

S o5
E=Cao=SEe2ocHn o FO00 1 0
Ot = =>TUNO0! pa S;
St Rl e o e =
D= g = 3

O5="385 257 Pa s 8022250 3= T 2 = &
) onl S § 55 T
= 2 == =4 O

S 3 iz s H
z 0 = g

dist(USArrests)
hclust (*, "average")

Opticky hledame, kde ukoncit shlukovani, tj. kde je k dalSimu
slouceni skupin velka vzdalenost.
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Shlukova analyza — K-means

Nevyhodou hierarchické metody je, Ze odlehlé hodnoty v ni
Casto tvofi samostatné skupiny. Alternativou je pouzit tzv.
K-means shlukovani. Postup je nasledujici

@ zvolime pocet skupin p

@ nahodné vybereme p bodl v mnohorozmérném prostoru
jako stredy téchto skupin

@ zaradime prvek ke skupiné s nejbliz§im stfedem
@ stfedy se prepocitaji

@ posledni dva body se opakuji, dokud nejsou rozfazeny
vSechny prvky

Nevyhodou tohoto postupu je, ze pokud v datech nejsou
jednoznacné skupiny, pak rozfazovani dopadne jinak pfi jiné
volbé nahodnych stiedu.
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