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Podmínky zápočtu

tři domácí úkoly
jednoduché opakování příkladů ze cvičení
odevzdávat na disk přes mou stránku
důraz je kladen na interpretaci výsledků
seminární práce
uvidíme, jestli letos bude :)
závěrečná zpráva ze statistického výzkumu
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Pokročilé statistické metody pro biology

Opakování

Popisné statistiky

Statistický výzkum

Statistický výzkum popisuje cílovou populaci na základě
náhodného výběru
rozlišujeme výběrové a populační charakteristiky
Zpráva ze statistického výzkumu obsahuje

Cíle výzkumu
Rozsah výzkumu (počet pozorování)
Popisné statistiky klíčových proměnných
Výsledky a interpretace složitějších proměnných
Vhodné je přidat několik stěžejních grafů
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Opakování

Popisné statistiky

Popisné statistiky

Číselné proměnné
popisné statistiky polohy – průměr, medián, vybrané
percentily (kvartily, extrémy)
popisné statistiky variability – rozptyl, směrodatná odchylka,
mezikvartilové rozpětí, koeficient variace
popisné statistiky tvaru rozdělení – šikmost, špičatost
grafické charakteristiky – krabicový graf, histogram

Nominální proměnné
číselné charakteristiky – absolutní a relativní četnosti
grafické charakteristiky – sloupcový a koláčový graf

Ordinální proměnné
lze použít jak průměr, medián atd.
pro malé počty kategorií i absolutní, relativní, případně
kumulativní četnosti
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Opakování

Popisné statistiky

Popisné statistiky tvaru rozdělení

Popisné statistiky tvaru rozdělení se počítají ze
standardizovaných proměnných, tak zvaných Z-skórů

Zi =
Xi − X
sd(X)

Šikmost – průměr ze třetích mocnin z-skórů

Skew(X) =
1
n

n∑
i=1

(
Xi − X
sd(X)

)3

=

∑n
i=1 Z3

i
n

Špičatost – průměr ze čtvrtých mocnin z-skórů mínus 3

Kurt(X) =
1
n

n∑
i=1

(
Xi − X
sd(X)

)4

− 3 =

∑n
i=1 Z4

i
n

− 3
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Opakování

Popisné statistiky

Popisné statistiky tvaru rozdělení

Vlastnosti
Šikmost

nulová – přibližně symetrické rozdělení
kladná – rozdělení protažené doprava
záporná – rozdělení protažené doleva

Špičatost
nulová – špičatost normálního rozdělení
kladná – špičatější než normální rozdělení
uprostřed vyšší sloupce, těžké chvosty
záporná – pložší než normální rozdělení
všechny sloupce podobně vysoké



Pokročilé statistické metody pro biology

Opakování

Popisné statistiky

Testování normality

Jak otestovat normalitu
Grafické testy – histogram a pravděpodobnostní graf
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Číselné testy – např. Shapiro-Wilkův,
Andersonův-Darlingův, Kolmogorovův-Smirnovův,
Lillieforsův a další
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Opakování

Popisné statistiky

Testování normality

Nejčastěji používané číselné testy normality
Shapiro-Wilkův – test odpovídající pravděpodobnostnímu
grafu
porovnává, jak si odpovídají teoretické percentily pro
normální rozdělení a percentily naměřené pro sledovanou
proměnnou
Kolmogorovův-Smirnovův – test je založen na
maximálním rozdílu empirické distribuční funkce a
distribuční funkce normálního rozdělení
Andersonův-Darlingův – test je založen na váženém
průměru druhé mocniny rozdílu empirické distribuční
funkce a distribuční funkce normálního rozdělení
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Opakování

Popisné statistiky

Značení

V průběhu semestru budeme využívat následující značení
X ,Y náhodné veličiny
n počet pozorování
i , j pořadový index pozorování / skupiny
Xi ,Yi konkrétní realizace veličin X ,Y
pi ,qi pravděpodobnosti konkrétních hodnot u diskrétních
rozdělení
f (x), f (y) hustoty spojitých veličin X ,Y
f (x , y) sdružená hustota veličin X ,Y
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Bodové a intervalové odhady

Odhadované charakteristiky

Nejčastěji odhadujeme následující charakteristiky
Pravděpodobnost náhodného jevu, πi

Střední hodnotu, E(X)
definice

diskrétní rozdělení: E(X) =
∑n

i=1 Xipi
spojité rozdělení: E(X) =

∫∞
−∞ xf(x)dx

s vlastnostmi:
E(aX + b) = aE(X) + b
E(X + Y) = E(X) + E(Y)
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Bodové a intervalové odhady

Odhadované charakteristiky

Nejčastěji odhadujeme následující charakteristiky
Rozptyl, Var(X)
definice

diskrétní rozdělení: Var(X) =
∑n

i=1(Xi − E(X))2pi
spojité rozdělení: Var(X) =

∫∞
−∞(x − E(X))2f(x)dx

s vlastnostmi:

Var(aX + b) = a2Var(X)
Var(X + Y) = Var(X) + Var(Y) + 2cov(X,Y)

Korelace, cor(X,Y) = cov(X,Y)√
Var(X)

√
Var(Y)

definice

diskrétní rozdělení: cor(X,Y) =
∑n

i=1(Xi−E(X))(Yi−E(Y))piqi√
Var(X)

√
Var(Y)

spojité rozdělení: cor(X,Y) =
∫ ∞
−∞(x−E(X))(y−E(Y))f(x,y)dxdy√

Var(X)
√

Var(Y)
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Bodové a intervalové odhady

Odhad pravděpodobnosti

nejlepším bodovým odhadem pravděpodobnosti je relativní
četnost pi = ni/n
nestranný odhad
náhodná veličina p = (pi − πi)/

√
πi(1 − πi)/n konverguje k

normálnímu rozdělení N(0,1) pro n → ∞
intervalový odhad pro pravděpodobnost je

pi ± z(1 − α/2)

√
pi(1 − pi)

n

pro použití tohoto intervalu musíme mít dostatečně velké n
a pi , má platit npi(1 − pi) > 9
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Bodové a intervalové odhady

Odhad střední hodnoty

nejlepším bodovým odhadem střední hodnoty je výběrový
průměr X =

∑n
i=1 Xi/n

nestranný odhad
platí Centrální limitní věta – pro rostoucí počet pozorování
konverguje rozdělení výběrového průměru k normálnímu
pro n → ∞
střední chyba průměru je SEM = sd(X)/

√
n

intervalový odhad pro průměr je

X ± tn−1(1 − α/2)
sd(X)√

n
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Bodové a intervalové odhady

Odhad rozptylu

jako bodový odhad populačního rozptylu používáme
výběrový rozptyl Var(X) =

∑n
i=1(Xi−X)2

n−1

nestranný odhad
označme výběrový rozptyl jako s2 a teoretický rozptyl jako
σ2, pak náhodná veličina χ = (n − 1)s2/σ2 má χ2

rozdělení o n stupních volnosti
χ2 rozdělení není symetrické
intervalový odhad pro rozptyl je(

(n − 1)s2

χ2
n(1 − α/2)

,
(n − 1)s2

χ2
n(α/2)

)
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Bodové a intervalové odhady

Odhad korelačního koeficientu

nejlepším bodovým odhadem korelačního koeficientu je
výběrový Pearsonův korelační koeficient

Cor(X,Y) =
∑n

i=1(Xi − X)(Yi − Y)√∑n
i=1(Xi − X)2

√∑n
i=1(Yi − Y)2

máme-li dvourozměrné normální rozdělení a odhadovaný
korelační koeficient |ρ| < 0.5 pak je interval spolehlivosti
pro korelační koeficient

Cor(X,Y)± z(1 − α/2)
1 − Cor(X,Y)2

√
n − 3
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Bodové a intervalové odhady

Odhad korelačního koeficientu

nejsou-li splněny podmínky výše, pak je intervalový odhad
pro korelační koeficient odvozen z faktu, že náhodná
veličina

Z =
1
2
ln

{
1 + Cor(X,Y)
1 − Cor(X,Y)

}
∼ N

(
1
2
ln

{
1 + ρ

1 − ρ

}
+

ρ

2(n − 1)
,

1
n − 3

)
interval spolehlivosti tedy je

tgh(Z ± z(1 − α/2)/
√

n − 3)

kde tgh(x) = (ex − e−x)/(ex + e−x)
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Bodové a intervalové odhady

Rozsah výběru

Rozsah výběru

Určení rozsahu výběru na základě požadované délky
intervalu spolehlivosti

Předpokládejme, že chceme realizovat výzkum, jehož cílem je
odhadnout střední hodnotu s požadovanou přesností. Délka
intervalu spolehlivosti nesmí přesáhnout hodnotu 2∆.
Platí

∆ ≥ z(1 − α/2)
σ√
n

Rozsah výběru pak musí splňovat

n ≥
(

z(1 − α/2)
σ

∆

)
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Testování hypotéz

Teoretický základ

Testování hypotéz

Opakování:

Při statistickém rozhodování testujeme proti sobě 2 hypotézy

Nulovou hypotézu, značíme H0
– patří sem jedna hodnota

Alternativní hypotézu, značíme HA
– patří sem interval hodnot

Nejběžnější testované hypotézy

H0 : mezi skupinami není rozdíl
H1 : mezi skupinami je rozdíl

H0 : proměnné spolu nesouvisí
H1 : proměnné spolu souvisí

H0 : data mají normální rozdělení
H1 : data nemají normální rozdělení
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Testování hypotéz

Teoretický základ

Testování hypotéz

Na základě testu uděláme jedno ze dvou rozhodnutí
Zamítneme nulovou hypotézu, pak platí alternativa
Nezamítneme nulovou hypotézu

Při rozhodování můžeme udělat chybu
chyba prvního druhu: zamítneme H0, přestože platí
– značí se α, a jmenuje se hladina významnosti
– závažnější z obou chyb
chyba druhého druhu: nezamítneme H0, přestože neplatí
– značí se β a hodnota 1 − β se nazývá síla testu
– při dané hladině významnosti chceme test co nejsilnější
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Testování hypotéz

Teoretický základ

Testování hypotéz

Vyhodnocení testu je založené na porovnání p-hodnoty a
hladiny významnosti (α):

p-hodnota ≤ α potom ZAMÍTÁME H0

p-hodnota > α potom NEZAMÍTÁME H0

Definice p-hodnoty
pravděpodobnost, že za platnosti H0 nastal výsledek, jaký
nastal, nebo jakýkoliv jiný, který ještě více odpovídá
alternativě
Předpokládejme, že platí nulová hypotéza. Jak je potom
pravděpodobný náš výsledek?
jinak se nazývá aktuální dosažená hladina testu
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Testování hypotéz

Teoretický základ

Statistický test

Rozlišujeme několik typů testů
Parametrické testy

předpokládají normální rozdělení
založené na odhadu testovaného parametru
t-testy, klasická ANOVA, Pearsonův korelační koeficient
bráno v základním kurzu

Neparametrické testy
normalitu nepředpokládají
založené na pořadích
Wilcoxonův test, Kruskal-Wallisův test, Spearmanův
korelační koeficient, atd.

Permutační testy
nemají žádné požadavky na rozdělení vstupních dat
založené na přeuspořádání a náhodném generování z
naměřených hodnot
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Testování hypotéz

Teoretický základ

Neparametrické testy

Přístup založený na pořadích

Příklad. Uvažujme naměřené věky otců 30, 28, 36, 38, 28, 26,
29, 37, 25, 50. Data věků rodičů bývají sešikmena a často
obsahují odlehlé hodnoty. Přiřadíme-li hodnotám pořadí podle
velikosti, získáme řadu 6, 3.5, 7, 9, 3.5, 2, 5, 8, 1, 10. Takto
získaná řada není sešikmená a nemá odlehlé hodnoty.
Nevýhodnou je, že tyto testy bývají slabší.



Pokročilé statistické metody pro biology

Testování hypotéz

Jednovýběrový test

Jednovýběrový test o střední hodnotě

Testované hypotézy
H0 : střední hodnota = µ0

H1 : střední hodnota ̸= µ0, nebo < µ0, nebo > µ0

Podle rozdělení dat
pro normálně rozdělená data se používá t-test
pro data, která nemají normální rozdělení, se používá
Wilcoxonův test

Wlcoxonův test testuje hodnotu mediánu
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Testování hypotéz

Jednovýběrový test

Wilcoxonův jednovýběrový test

Postup jednovýběrového Wilcoxonova testu

spočítají se rozdíly od testované hodnoty Xi − m0

určí se jejich znaménko

určí se pořadí absolutních hodnot rozdílů

spočítá se součet těchto pořadí patřících kladným rozdílům

označme tento součet S+ a obdobně označme S− součet pořadí pro
záporné rozdíly, musí platit S+ + S− = n(n + 1)/2.

Pro větší n lze užít transformaci

U =
S+ − 1

4 n(n + 1)√
1

24 n(n + 1)(2n + 1)

která má za platnosti H0 N(0, 1) rozdělení.
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Testování hypotéz

Jednovýběrový test

Wilcoxonův jednovýběrový test

Příklad. Mějme věky otců 30, 28, 36, 38, 28, 26, 29, 37, 25, 50 a testujme
hypotézu, že medián věku otců je 33 let.

H0 : medián věku otců je 33 let

H1 : medián věku otců není 33 let

Řešení:

spočtěme rozdíly Xi − m0: -3, -5, 3, 5, -5, -7, -4, 4, -8, 17

jejich absolutním hodnotám přiřad’me pořadí: 1.5, 6, 1.5, 6, 6, 8, 3.5,
3.5, 9, 10

sečtěme kladné (modré) pořadí S+ = 21 a záporné (červené) pořadí
S− = 34

testová statistika vychází U = −0.66

p-hodnota 0,51 > α(= 0.05) a H0 tedy nezamítáme

střední věk otců se významně neliší od hodnoty 33 let
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Testování hypotéz

Jednovýběrový test

Rozsah výběru
Kolik pozorování je potřeba, aby jednovýběrový test splňoval

hladina významnosti α
síla testu 1 − β

očekávaný rozdíl od nulové hypotézy µ1 − µ0

očekávaná směrodatná odchylka σ

q značí kvantil standardního normálního rozdělení
Budeme potřebovat rozsah výběru n

n ≥
(

q(1 − α/2) + q(1 − β)

µ1 − µ0
σ

)2

Příklad. Pro jednovýběrový t-test na hladině významnosti 0.05, jehož síla by
byla 0.9 proti rozdílu od nulové hypotézy o velikosti 4, při očekávané
směrodatné odchylce 7, potřebujeme n hodnot, kde n je

n ≥
(

q(1 − 0.05/2) + q(0.9)
4

7
)2

= 32.2

Pro Wilcoxonův test potřebujeme o 15% pozorování více.
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Testování hypotéz

Párový test

Párový test

Test porovnávající dva závislé výběry, (data, která tvoří přirozené
páry)
Testované hypotézy

H0 : střední hodnota rozdílu párů = µ0

H1 : střední hodnota rozdílu ̸= µ0, nebo < µ0, nebo > µ0

Postup párového testu

spočítám rozdíly mezi všemi páry

Ri = Xi − Yi

kde Xi a Yi jsou párová měření

testuje se střední hodnota rozdílů Ri jednovýběrovým testem

Příklad. Porovnávám věk otce a matky, srovnávám sílu pravé a levé ruky,
srovnávám měření před a po podání nějakého léku, atd.
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Testování hypotéz

Dvouvýběrový test

Dvouvýběrový test

Porovnává dva nezávislé výběry (pozorování nemohu napárovat).
Testované hypotézy:

H0 : rozdíl středních hodnot = µ0

H1 : rozdíl středních hodnot ̸= µ0, nebo < µ0, nebo > µ0

Podle typu dat:

normální data a shodné rozptyly: dvouvýběrový t-test pro
shodné rozptyly

normální data a různé rozptyly: dvouvýběrový Welchův t-test

data, která nemají normální rozdělení: dvouvýběrový
Wilcoxonův (Mann-Whitneyův) test
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Testování hypotéz

Dvouvýběrový test

Wilcoxonův dvouvýběrový test

Postup dvouvýběrového Wilcoxonova testu
oba výběry spojí do jednoho sdruženého výběru
sdružený výběr se uspořádá podle velikosti a každé
pozorování dostane své pořadí
v každém výběru zvlášt’ se vypočte součet pořadí a
následně i průměrné pořadí
pokud jsou si průměrná pořadí podobná, výběry se mezi
sebou významně neliší
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Testování hypotéz

Dvouvýběrový test

Wilcoxonův dvouvýběrový test

Technický výpočet: označme T1,T2 součet pořadí v prvním,
respektive druhém výběru. Dále vypočteme

U1 = n1n2 +
n1(n1 + 1)

2
− T1,U2 = n1n2 +

n2(n2 + 1)
2

− T2,

kde n1,n2 jsou rozsahy jednotlivých výběrů. Přesný test
porovnává hodnotu min(U1,U2) s kritickou hodnotou.
Asymptoticky platí, že

U0 =
U1 − 1

2n1n2√
n1n2
12 (n1 + n2 + 1)

má za platnosti H0 N(0,1) rozdělení.
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Testování hypotéz

Dvouvýběrový test

Wilcoxonův dvouvýběrový test

Příklad. Chceme porovnat výsledky testů studentů v Ústí nad Labem a v
Liberci. Studenti v Ústí dostali bodová ohodnocení 45, 79, 81, 56, 53, 77.
Studenti v Liberci získali ohodnocení 76, 62, 84, 80, 41, 79, 66.
Testované hypotézy

H0 : Studenti v Ústí a v Liberci jsou stejní

H1 : Studenti v Ústí a v Liberci se liší.

Řešení:

srovnáme všechny hodnoty do řady
41, 45, 53, 56, 62, 66, 76, 77, 79, 79, 80, 81, 84

hodnotám přiřadíme pořadí
1, 2, 3, 4, 5, 6, 7, 8, 9.5, 9.5, 11, 12, 13

vypočteme statistiky T1 = 38.5,T2 = 52.5,U1 = 24.5,U2 = 17.5 a
U0 = 0.5

p-hodnota = 0.6678 > α a H0 nezamítáme

neprokázal se rozdíl mezi studenty v Ústí a v Liberci
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Testování hypotéz

Dvouvýběrový test

Rozsah výběru
Kolik pozorování je potřeba, aby dvouvýběrový test splňoval

hladina významnosti α
síla testu 1 − β

očekávaný rozdíl mezi výběry µ1 − µ2

očekávaná smíšená směrodatná odchylka σ

q značí kvantil standardního normálního rozdělení
Budeme potřebovat rozsah výběru n

n ≥ 2
(

q(1 − α/2) + q(1 − β)

µ1 − µ2
σ

)2

Příklad. Pro dvouvýběrový t-test na hladině významnosti 0.05, jehož síla by
byla 0.9 při rozdílu průměrů mezi skupinami 4 a očekávané směrodatné
odchylce 7, potřebujeme n hodnot, kde n je

n ≥
(

q(1 − 0.05/2) + q(0.9)
4

7
)2

= 64.3

Pro Wilcoxonův test potřebujeme o 15% pozorování více.
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Testování hypotéz

Analýza rozptylu

Analýza rozptylu – ANOVA

Porovnáváme-li střední hodnotu ve více než dvou nezávislých
výběrech.
Testované hypotézy:

H0 : všechny střední hodnoty jsou stejné

H1 : alespoň jedna střední hodnota se liší

Myšlenka spočívá v porovnání variability mezi výběry s variabilitou v
rámci výběrů.
Podle typu dat:

normální data a shodné rozptyly: klasická ANOVA pro shodné
rozptyly

normální data a různé rozptyly: Welchova ANOVA

data, která nemají normální rozdělení: Kruskal-Wallisova ANOVA

Příklad. Byla měřena koncentrace mědi v těle ryb. Porovnáváno bylo 5
rybníků, kde z každého byl vyloven vzorek alespoň 10-ti ryb. Liší se od sebe
tyto rybníky?
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Testování hypotéz

Analýza rozptylu

Kruskal-Wallisův test

Postup Kruskal-Wallisova testu
obdoba s dvouvýběrovým Wilcoxonovým testem
srovnáme všechny naměřené hodnoty do řady
určíme jejich pořadí
pro každý výběr sečteme pořadí a součet označíme
Ti , i = 1, . . . , k , kde k je počet výběrů
testová statistika

Q =
12

n(n + 1)

k∑
i=1

T 2
i

ni
− 3(n + 1)

má za platnosti H0 χ2-rozdělení
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Analýza rozptylu

Dunnův test

Párové srovnání pro data, která nemají normální rozdělení

porovnání všech dvojic výběrů při udržení celkové hladiny
významnosti

Testová statistika porovnávající i-tý a j-tý výběr je

D =

(∣∣∣Ti
ni
− Tj

nj

∣∣∣)√
n(n+1)

12

(
1
ni
+ 1

nj

)

statistika má za platnosti H0 N(0,1)-rozdělení

pro vícenásobné porovnání se pak použijí upravené p-hodnoty,
aby byla udržena celková hladina testu
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Testování hypotéz

Analýza rozptylu

Dunnův test

V případě, že v datech jsou shodné hodnoty a je tedy třeba dělit
pořadí, používá se statistika

D =

(∣∣∣Ti
ni
− Tj

nj

∣∣∣)√
n(n+1)−

∑r
l=1(S

3
l −Sl )/(n−1)

12

(
1
ni
+ 1

nj

)
kde Sl je počet l-té shodné hodnoty.

platí pro ni stejná pravidla jako na slidu výše
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Testování hypotéz

ANOVA pro opakovaná měření

ANOVA pro opakovaná měření

Porovnává několik závislých výběrů.
Příklady

Ochutnávka jogurtů: 20 lidí ochutnává a hodnotí každý
všech 5 porovnávaných vzorků jogurtu.
Měření opakovaná v čase: chceme hodnotit vývoj
pacientova zdravotního stavu v čase. Pro 30 pacientů
děláme opakovaná měření jaterních testů.

Testované hypotézy
H0 : Střední hodnoty výběrů se neliší
H1 : Střední hodnoty výběrů se liší
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Testování hypotéz

ANOVA pro opakovaná měření

ANOVA pro opakovaná měření

Vyhodnocení hypotéz probíhá pomocí porovnání variability
mezi výběry s variabilitou zbytkovou. Zbytková variabilita se od
variability v rámci výběrů liší tím, že je snížena o variabilitu
způsobenou rozdíly mezi jedinci. Konkrétně se tato zbytková
variabilita získá následovně

SST =
k∑

i=1

ni∑
j=1

(Xij − X ..)
2 =

=
k∑

i=1

ni(X i. − X ..)
2 +

k∑
i=1

ni∑
j=1

(Xij − X i.)
2 =

= SSA + SSe

SSz = SSe − SSS = SSe − k
ni∑

j=1

(X .j − X ..)
2

Test je pak založen na porovnání SSA a SSz.
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Testování hypotéz

ANOVA pro opakovaná měření

Friedmanův test

Porovnává závislé výběry, které nemají normální rozdělení.
Postup Friedmanova testu:

určíme pořadí hodnot v rámci každého jedince
tato pořadí se sečtou pro každý výběr zvlášt’
označme součet těchto pořadí Ti , i = 1, . . . , k
testová statistika

Q =
12n

k(k + 1)

k∑
i=1

(
Ti

n
− k + 1

2

)2

za platnosti H0 má tato statistika χ2-rozdělení o k − 1
stupních volnosti.
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Testování hypotéz

Korelační koeficient

Pearsonův korelační koeficient

Je-li cílem výzkumu zjistit, zda spolu lineárně souvisí dvě
číselné proměnné, používá se korelační koeficient.
Pearsonův korelační koeficient vypočteme jako

Cor(X,Y) =
Cov(X,Y)√
Var(X)Var(Y)

=

∑n
i=1(Xi − X)(Yi − Y)√∑n

i=1(Xi − X)2
∑n

i=1(Yi − Y)2

Libovolný korealční koeficient nabývá hodnot mezi -1 a 1 a
platí, že

absolutní nepřímá závislost má Cor(X,Y) = −1
lineární nezávislost/ nekorelovanost má Cor(X,Y) = 0
absolutní přímá závislost má Cor(X,Y) = 1
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Testování hypotéz

Korelační koeficient

Pearsonův korelační koeficient

O statistické významnosti závislosti rozhodujeme testem
H0 : korelační koeficient = 0
H1 : korelační koeficient ̸= 0, > 0, < 0

Za platnosti nulové hypotézy platí, že testová statistika

T =
Cor(X,Y)√

1 − Cor(X,Y)2

√
(n − 2)

má t-rozdělení o n − 2 stupních volnosti.
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Testování hypotéz

Korelační koeficient

Pearsonův korelační koeficient

V případě, že chceme testovat konkrétní hodnotu korelačního
koeficientu, tedy

H0 : korelační koeficient = ρ0

H1 : korelační koeficient ̸= ρ0, > ρ0, < ρ0

pak se využívá tzv. Fisherovy Z -transformace, která říká, že

Z =
1
2
ln

{
1 + Cor(X,Y)
1 − Cor(X,Y)

}
∼ N

(
1
2
ln

{
1 + ρ

1 − ρ

}
,

1
n − 3

)
kde ρ je skutečná/ teoretická hodnota korelačního koeficientu.
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Testování hypotéz

Korelační koeficient

Pearsonův korelační koeficient

Pomocí Z -transformace je možné porovnávat i dva korelační
koeficienty mezi sebou.
Testují se hypotézy

H0 : korelační koeficienty jsou stejné ρ1 = ρ2

H1 : korelační koeficienty se liší ρ1 ̸= ρ2

Testová statistika
U =

Z1 − Z2√
1

n1−3 + 1
n2−3

má při shodě porovnávaných korelačních koeficientů N(0,1)
rozdělení.
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Testování hypotéz

Korelační koeficient

Spearmanův korelační koeficient

Pokud chceme otestovat, zda spolu souvisí dvě číselné
proměnné, které nemají normální rozdělení (ale stále se jeví
jako spojité), používá se Spearmanův korelační koeficient.
Stejně jako další neparametrické testy je založen na pořadích.
Postup

Hodnoty každé proměnné převedu na pořadí.
Spočítá se Pearsonův korelační koeficient pro tato pořadí.

Spearmanův korelační koeficient měří monotónní vztah dvou
veličin. Je tedy obecnější než Pearsonův korelační koeificient,
který měřil jen lineární závislost.
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Testování hypotéz

Korelační koeficient

Kendallův korelační koeficient

Pokud chceme zjistit, zda je lineární vztah mezi dvěma uspořádanými
kategorickými proměnnými, používá se Kendallův korelační
koeficient (Kendallovo τ ).

Označme dvě porovnávané proměnné X a Y . Nyní uvažujme
všechny dvojice naměřených hodnot Xi ,Yi a pokud pro danou dvojici
platí, že Xi < Xj&Yi < Yj nebo Xi > Xj&Yi > Yj , pak označme tuto
dvojici jakou souhlasnou, pokud platí Xi < Xj&Yi > Yj nebo
Xi > Xj&Yi < Yj , označme ji za nesouhlasnou.

Kendallovo τ je založeno na rozdílu počtu souhlasných (ns) a počtu
nesouhlasných (nn) dvojic.
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Testování hypotéz

Korelační koeficient

Kendallův korelační koeficient

Konkrétně je Kendallovo τ definováno jako

τ =
ns − nn

n
=

2
n(n − 1)

∑
i<j

sign(Xi − Xj)sign(Yi − Yj)

Rozptyl tohoto koeficientu je

Var(τ) =
2(2n + 5)
9n(n − 1)

a testová statistika τ/Var(τ) má za platnosti nulové hypotézy
asymptoticky N(0,1) rozdělení.
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Korelační koeficient

Kendallovo τ

Výše uvedený koeficient funguje dobře, pokud v datech nejsou stejné
hodnoty. Pokud se stejné hodnoty vyskytnou, používají se následující
obdoby tohoto koeficientu.
Pro proměnné se stejným počtem možných hodnot

τB =
ns − nn√

(n0 − n1)(n0 − n2)
,

kde n0 = n(n − 1)/2, n1 =
∑

i ti(ti − 1)/2 a ti jsou počty shodných
hodnot u proměnné X , n1 =

∑
i ui(ui − 1)/2 a ui jsou počty shodných

hodnot u proměnné Y .
Pro proměnné s různým počtem možných hodnot

τC =
2(ns − nn)

n2 m−1
m

,

kde m je minimální počet hodnot u obou proměnných.
Výpočet rozptylů a následných testových statistik pro τB a τC je
složitý. Přenechme ho tedy softwarům.
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Jednoduchá lineární regrese

Lineární regrese

Lineární regrese zkoumá příčinnou závislost jak jedna
proměnná závisí na jiné/ jiných.
Označme

nezávisle proměnná X – příčina
závisle proměnná Y – důsledek

Předpokládáme lineární model ve tvaru

Yi = β0 + β1Xi + ei

kde
Yi jsou hodnoty závisle proměnné

Xi jsou hodnoty nezávisle proměnné

β0 je absolutní člen

β1 je lineární člen

ei jsou náhodné chyby
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Regresní modely

Jednoduchá lineární regrese

Lineární regrese

Graficky popisujeme pomocí bodového grafu, ale není jedno,
která proměnná je na které ose

na x-ovou osu se kreslí nezávisle proměnná
na y -ovou osu se kreslí závisle proměnná
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Regresní modely

Jednoduchá lineární regrese

Lineární regrese

Odhad probíhá metodou nejmenších čtverců, která
minimalizuje součet druhých mocnin residuí

min
n∑

i=1

R2
i = min

n∑
i=1

(Yi − Ŷi)
2 = min

b0,b1

n∑
i=1

(Yi − (b0 + b1Xi))
2

Ri jsou residua (rozdíl skutečné a predikované hodnoty)
Ŷi jsou odhady, nebo též predikce,
b0,b1 jsou odhady regresních koeficientů (absolutní a
lineární člen)
predikci hodnoty Y v bodě x0 získáme jako

Ŷ0 = b0 + b1x0

např. ze známé výšky můžeme predikovat očekávanou
hmotnost
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Regresní modely

Jednoduchá lineární regrese

Lineární regrese

Koeficient determinace

R2 = 1 −
∑n

i=1(Yi − Ŷi)
2∑n

i=1(Yi − Y )2
= cor(X,Y)2

kolik procent variability závisle proměnné se modelem vysvětlí

tedy z kolika procent závisle proměnná závisí na X a z kolika na
něčem jiném

Testované hypotézy testu nezávislosti.

H0 : Proměnná Y na proměnné X lineárně nezávisí, β1 = 0

H1 : Proměnná Y na proměnné X lineárně závisí, β1 ̸= 0

Test je založen na faktu, že b1/se(b1) ∼ N(0,1), kde b1 je odhad
lineárního členu β1 a se(b1) je jeho střední chyba.
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Jednoduchá lineární regrese

Lineární regrese

Příklad. Počítejme závislost hmotnosti na výšce u
jedenáctiletých dětí.

odhadnutá regresní závislost Yi = −73.81 + 0.75Xi

střední chyba odhadu lineárního členu 0.04
testovou statistiku 18.76 jsme porovnali s kvantilem
t-rozdělení t220(1 − 0.975) = 1.97
p-hodnota testu vyšla < 2.2 × 10−16, což je menší než
α = 0.05
zamítáme nulovou hypotézu nezávislosti
Koeficient determinace vyšel 0.6153.

Závěr: U mužů s jedním rizikovým faktorem ischemické
choroby srdeční závisí hmotnost na výšce. Závislost je přímá a
vysvětlí se jí 62% variability závisle proměnné.
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Regresní modely

Jednoduchá lineární regrese

Lineární regrese

I lineární regrese má své předpoklady
Mezi proměnnými je skutečně lineární vztah
Residua jsou nezávislá
Residua mají normální rozdělení
Stabilita rozptylu
V datech nejsou vlivná pozorování

Jednotlivé předpoklady můžeme hodnotit bud’ na základě
znalosti dat (nezávislost), nebo grafickými případně číselnými
testy.
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Regresní modely

Jednoduchá lineární regrese

Lineární regrese

Ukázka grafických testů předpokladů
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Regresní modely

Jednoduchá lineární regrese

Lineární regrese

Ukázka grafických testů předpokladů
1. graf: lineární vztah – červená čára nemá mít trend
na grafu je do oblouku, lineární závislost není dostatečná
2. graf: normalita residuí – body mají ležet na přímce
na grafu se v horní části odchylují, normalita není splněna
3. graf: stabilita rozptylu – červená čára nemá mít trend
na grafu roste, rozptyl není stabilní
4. graf: body nemají překročit meze (čárkované křivky)
na grafu vše v pořádku
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Regresní modely

Mnohonásobná lineární regrese

Lineární regrese

Model mnohonásobné lineární regrese má tvar

Y = β0 + β1X1 + β2X2 + β3X3 + . . .+ βkXk + ϵ

Příklad. Zkoumáme, o kolik stoupne/klesne voda v řece v
závislosti na srážkách, na teplotě, na typu půdy, na nasycenosti
půdy, na nadmořské výšce, atd.
Některé proměnné mají na závisle proměnnou větší vliv, jiné
menší.
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Mnohonásobná lineární regrese

Lineární regrese

Optimální model, ve kterém budou jen proměnné s významným
vlivem, hledáme pomocí krokové regrese.

Dopředná (forward): začíná s modelem bez nezávisle
proměnných a v každém kroku přidá jednu s největším,
statisticky významným vlivem

Zpětná (backward): začíná s úplným modelem a v každém
kroku vynechá jednu proměnnou s nejmenším, statisticky
nevýznamným vlivem

Kombinace obou předchozích (both sided): začíná s
prázdným modelem bez nezávisle proměnných a v každém
kroku přidá jednu proměnnou s největším, statisticky
významným vlivem a poté zkontroluje, zda nelze jinou
proměnnou vynechat.

Cílem je získat model, kde budou nezávisle proměnné pouze
se statisticky významným vlivem.
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Regresní modely

Mnohonásobná lineární regrese

Lineární regrese

Nezávislá kategorická proměnná v regresním modelu.
kategorickou proměnnou s k kategoriemi, reprezentujeme
pomocí k − 1 pomocných dummy proměnných
dummy proměnné jsou 0-1 proměnné

Xi = 1 . . . nastala i-ta kategorie

= 0 . . . jinak

k -tá kategorie nastane, pokud X1 = . . . = Xk−1 = 0
každá z dummy proměnných má svou p-hodnotu
významnost vlivu celé kategorické proměnné se řeší přes
tabulku analýzy rozptylu
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Regresní modely

Mnohonásobná lineární regrese

Lineární regrese

Interakce popisují způsob, jímž se dvě nezávisle proměnné
ovlivňují při jejich současném vlivu na proměnnou závislou.

Příklad. Do výběru bylo zařazeno 222 jedenáctiletých dětí a
bylo u nich zjišt’ováno, jak závisí procento tuku v těle na jejich
váze a na sportu, kterému se věnují.
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Regresní modely

Mnohonásobná lineární regrese

Interakce jsou vidět již z grafu, do kterého se vykreslí závislost
číselných proměnných zvlášt’ pro každou kategorii proměnné
kategorické. Pokud interakce v datech jsou, pak se zobrazí
různoběžné přímky. Pokud interakce v modelu nejsou, ale
skupiny se od sebe liší, zobrazí se rovnoběžné přímky. Pokud
rozdíl mezi skupinami není, přímky splývají.

Příklad. V modelu interakce existují - závislost procenta tuku
na hmotnosti je jiná pro lední hokejisty a pro ostatní.
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Mnohonásobná lineární regrese

Lineární regrese

Informační kritéria hodnotící model.
Každé z níže uvedených kritérií je založeno na věrohodnosti modelu
(L - likelihood), tj. na ukazateli, jak dobře model kopíruje data. Tato
věrohodnost se dále penalizuje počtem parametrů použitých v
modelu, k . Platí, že čím menší hodnota kritéria, tím lepší je model.

Akaikeho informační kritérium (AIC):

AIC = 2k − 2 ln(L)

Upravené Akaikeho informační kritérium (AICc) pro malé
vzorky:

AICc = AIC +
2k(k + 1)
n − k − 1

Bayesovské informační kritérium (BIC):

BIC = ln(n)k − 2 ln(L)
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Regresní modely

Zobecněná lineární regrese

Co dělat, když nejsou splněny předpoklady na rozdělení
náhodné chyby modelu?

Závisle proměnná je spojitá – použijeme pro závisle
proměnnou transformaci, která ji posune k normálnímu
rozdělení. Nejčastěji se používá přirozený logaritmus,
nebo Box-Coxova transformace.
Závisle proměnná je dvouhodnotová (0-1) – použije se
logistická regrese.
Závisle proměnnou tvoří počty – použije se Poissonova
regrese.
Závisle proměnná je ordinální – použije se ordinální
regrese.
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Logistická regrese

Závisle proměnná je dvouhodnotová

pravděpodobnost hodnoty 1 označme π

modelujeme, jak π závisí na nezávisle proměnných

π

1 − π
= exp{β0 + β1X1 + β2X2 + β3X3 + . . .+ βk Xk + ϵ}

parametr π
1−π se jmenuje šance a počítá se jako

pravděpodobnost, že jev nastal, vs. pravděpodobnost, že jev
nenastal

v praxi se modeluje logaritmus šancí pomocí klasické lineární
regrese

ln

(
π

1 − π

)
= β0 + β1X1 + β2X2 + β3X3 + . . .+ βk Xk + ϵ

funkce na levé straně rovnosti se jmenuje logit link
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Logistická regrese

Logistická regrese

Pokud z odhadnutého modelu pak chceme zpětně získat vztah
pro pravděpodobnost π, použijeme

π =
exp{β0 + β1X1 + β2X2 + β3X3 + . . .+ βkXk}

1 + exp{β0 + β1X1 + β2X2 + β3X3 + . . .+ βkXk}

Interpretace koeficientu β1:
"Šance vlastnost mít mi při nárůstu X1 o 1 vzroste průměrně
expβ1 krát při stejných hodnotách ostatních nezávisle
proměnných."
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Logistická regrese

Logistická regrese

Příklad. Uvažujme 150 cestujících na Titaniku. Ke každému
cestujícímu máme uvedeno pohlaví, věk, třídu, ve které
cestoval a informaci, zda se zachránil nebo ne. Následujícíc
tabulky ukazují, jací cestující se zachránili, a jací se utopili.

Muž Žena
Přežil 23 26
Nepřežil 89 12

Dospělý Dítě
Přežil 46 3
Nepřežil 97 4

1. třída 2. třída 3. třída Posádka
Přežil 11 10 11 17
Nepřežil 2 12 39 48
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Regresní modely

Logistická regrese

Logistická regrese

Příklad. Označme π pravděpodobnost, že dotyčný přežil. Odhad
modelu logistické regrese vyšel

ln

(
π

1 − π

)
= 1.45 − 1.58(2.tr)− 3.04(3.tr)− 1.72(posadka) +

+2.32(zena)− 0.9(dospely)

Jako vyznamné vyšly proměnné pohlaví (p = 2.55 × 10−6) a třída
(p=0.0014) v níž dotyčný cestoval, konkrétně se významně liší třetí
třída od první třídy a na hladině významnosti 0.1 i posádka od první
třídy.

Ženy mají exp(2.32) = 10.17 krát větší šanci na přežití než muži při
ostatních parametrech neměnných.
Cestující v první třídě mají 1/ exp(−3.04) = 20.9 krát větší šanci
přežít než cestující ve třetí třídě při ostatních parametrech
neměnných. Cestující v první třídě mají 1/ exp(−1.72) = 5.6 krát
větší šanci přežít než posádka při ostatních parametrech neměnných.
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Zobecněné jednorozměrné metody

Základy mnohorozměrné statistiky

Předpokládejme, že nemáme jednu proměnnou X , ale vektor
proměnných X = (X1,X2, . . . ,Xk )

T .

Příklad. Měříme několik fyzických parametrů jedince: výška,
váha, krevní tlak, vitální kapacitu plic, atd. Každý žák na
vysvědčení dostane známku z několika předmětů: čeština,
matematika, zeměpis, přírodopis, atd.

Namísto jedné střední hodnoty µ a jednoho rozptylu σ2

máme vektor středních hodnot µ = (µ1, . . . , µk )
T a

varianční matici Σ = (σij)

odhadujeme je pomocí vektoru průměrů X = (X 1, . . . ,X k )
T

a maticí S = (sij), kde sij = cov(Xi ,Xj) pro i ̸= j a
sii = Var(Xi)



Pokročilé statistické metody pro biology
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Zobecněné jednorozměrné metody

Základy mnohorozměrné statistiky

Zobecnění základních statistických metod.
Dvouvýběrový test ⇒ Hotellingův test
Analýza rozptylu (ANOVA) ⇒ MANOVA
Korelační koeficient ⇒ Kanonické korelace
Lineární regrese ⇒ Mnohorozměrná lineární regrese,
kde závisle proměnná má více složek.
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Zobecněné jednorozměrné metody

Hotellingův test

Porovnávám střední hodnotu náhodného vektoru ve dvou
populacích. Předpokládám nezávislá měření. Testuji

H0 : vektory středních hodnot se rovnají
H1 : vektory středních hodnot se nerovnají

Testová statistika má tvar

T 2 =
n1n2

n1 + n2
(X − Y)TΣ−1(X − Y)

Σ =
(n1 − 1)Σ1 + (n2 − 1)Σ2

n1 + n2 − 2

Testová statistika má za platnosti H0 Hotellingovo T 2-rozdělení s k a
n1 + n2 − 2 stupni volnosti. Toto lze převést na F -rozdělení.
Obdobně lze zkonstruovat i testovou statistiku pro jednovýběrový test.
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Zobecněné jednorozměrné metody

MANOVA

Při srovnání více nezávislých výběrů se opět testují hypotézy
H0 : vektory středních hodnot se rovnají
H1 : vektory středních hodnot se nerovnají

Stejně jako u jednorozměrné analýzy rozptylu, i ve
vícerozměrné verzi je vyhodnocení hypotéz založeno na
porovnání variability vysvětlené a nevysvětlené. Existuje
několik testových statistik, kde všechny pracují s maticemi

W =

p∑
i=1

ni∑
j=1

(Yij − Yi)
T (Yij − Yi)

B =

p∑
i=1

ni(Yi − Y)T (Yi − Y)

kde p značí počet výběrů a Yi průměr i-tého výběru.
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Mnohorozměrné statistické metody
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MANOVA

Testové statistiky pro MANOVu.
Wilkovo lambda

ΛW = det

(
W

W + B

)
Pillayova stopa

ΛP = tr
(

B
W + B

)
Hotellingovo lambda

ΛH = tr
(

B
W

)
při porovnání dvou výběrů se všechny tyto statistiky smrští na
Hotellingův dvouvýběrový test.
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Zobecněné jednorozměrné metody

Kanonické korelace

Máme dvě skupiny proměnných X a Y měřených na stejných
jedincích a chceme zjistit, zda mezi těmito skupinami je nějaký
vztah, případně jaký.

Příklad. Uvažujme dvě různé skupiny lékařských vyšetření a
hodnotíme, zda obě tyto skupiny měří to samé, nebo ne.

Kanonickou korelaci získáme jako maximální korelaci mezi
dvěma proměnnými reprezentujícími skupiny X a Y. Tyto
proměnné se nazývají kanonické proměnné.
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Zobecněné jednorozměrné metody

Kanonické korelace

Hledání párů kanonických proměnných
kanonická proměnná je lineární kombinace proměnných ve
skupině
získáme k párů kanonických proměnných, kde k je počet
proměnných v menší skupině
první pár kanonických proměnných

K11 = aT X,K21 = bT Y

pro něž platí

cor(K11,K21) = max{cor(aTX,bTY)}

druhý pár kanonických proměnných je kolmý k prvnímu a
opět je pro něj korelace maximální,
kanonické korelace jsou korelace mezi páry kanonických
proměnných
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Metoda hlavních komponent (PCA)

Snížení počtu proměnných v mnohorozměrném prostoru
v mnohorozměrném prostoru bývají proměnné vzájemně
korelované
tyto proměnné dávají podobnou / stejnou informaci
proměnné podle podobnosti sloučíme do skupin a každou
reprezentujeme jednou proměnnou
použijeme jen malý počet nových proměnných s velkým
množstvím informace
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Metoda hlavních komponent

Metoda hlavních komponent (PCA)

Transformace původních proměnných do nových

Y = XT P

kde
X je centrovavá matice vstupních hodnot (centrování =
odečet průměru),
Y je výstupní - cílová matice
P je matice transformačních vektorů. Matici P získáme
pomocí rozkladu korelační matice vstupních dat C

C = PΛPT

Λ je matice vlastních čísel korelační matice C
matice P obsahuje vlastní vektory korelační matice C.
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Metoda hlavních komponent (PCA)

Výsledná matice hlavních komponent Y má následující
vlastnosti

její vektory jsou vzájemně kolmé (nezávislé)
řadí se podle variability: od vektoru s největší variabilitou k
vektoru s nejnižší variabilitou
obsahuje veškerou informaci, kterou obsahovala původní
data
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Metoda hlavních komponent

Metoda hlavních komponent (PCA)

Celý postup si můžeme představit následovně
představíme si mnohozměrná data v prostoru
daty proložíme vektor ve směru s největší variabilitou
tak získáme první hlavní komponentu (PC)
hledáme vektor, který by byl k prvnímu kolmý a opět byl ve
směru s největší variabilitou
získáme druhou hlavní komponentu
hledáme vektor, který by byl kolmý k prvním dvěma a byl
ve směru s největší variabilitou
získáme třetí hlavní komponentu
poslední dva kroky opakujeme, dokud máme body ve
volném prostoru
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Metoda hlavních komponent

Metoda hlavních komponent (PCA)

Vstupní data poté reprezentujeme menším množstvím nových proměnných
(hlavních komponent) tak, abychom ztratili co nejméně informace / variability.
Jejich optimální počet je počet vlastních čísel větších než 1. Graficky
znázorněno pomocí tzv. "Scree plot".

Scree plot

V
ar

ia
nc

es

2
4

6
8

Comp.1 Comp.3 Comp.5 Comp.7 Comp.9

Graf zobrazující hodnoty pro prvních 10 hlavních komponent získaných z
původních 24 proměnných. Optimální počet hlavních komponent je 5.
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Faktorová analýza

Nevýhodou hlavních komponent je, že nemají přirozenou
interpretaci. Pokud tedy chceme získat menší počet
proměnných, které jsou interpretovatelné, používá se
faktorová analýza.

Hlavní myšlenka faktorové analýzy pochází z psychologie:
na každého působí k neměřitelných faktorů
podle toho, jak na nás působí, my reagujeme
podle reakcí na p podnětů se snažíme identifikovat
původní faktory
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Faktorová analýza

Metoda vychází z metody hlavních komponent. Identifikujeme k
hlavích komponent, a ty pak "rotujeme", dokud nedostanou
nějakou přirozenou interpretaci. K rotaci je možné použít
několik metod, nejčastěji se používá varimax.

Příklad. Děti nosí ze školy vysvědčení. Podle známek, pak lze
identifikovat dvě skupiny studentů, jedna z nich má dobré
známky v předmětech matematika, fyzika, přírodopis, zeměpis,
chemie, druhá má dobré známky v předmětech čeština,
angličtina, dějepis, občanská výchova. Faktory, které na ně
působí jsou pak přírodní vědy a humanitní obory.
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Faktorová analýza

Vycházíme z rovnice obdobné jako u analýzy hlavních
komponent

X = LF + ε

kde
X je centrovaná matice naměřených dat
L jsou tzv. loadings
F jsou hledané faktory
ε jsou náhodné chyby
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Faktorová analýza

Předpoklady faktorové analýzy

Aby bylo možné faktory odhadnout, musí platit
F a ε jsou nezávislé
E(F) = 0 a Cov(F) = I, kde I je jednotková matice,
tj. faktory mají nulovou střední hodnotu, jednotkový rozptyl
a jsou nezávislé
E(ε) = 0 a Cov(ε) = σ2I,
tj. náhodné chyby jsou nezávislé, stejně rozdělené s
nulovou střednín hodnotou a konstantním rozptylem σ2

Cov(X) = LL′ + σ2I, tedy
Var(Xi) = ℓ2

i1 + ℓ2
i2 + . . .+ ℓ2

im + σ2

Cov(Xi,Xj) = ℓi1ℓj1 + ℓi2ℓj2 + . . .+ ℓimℓjm

Cov(X,F) = L, tedy Cov(Xi,Fj) = ℓij
kde ℓij jsou prvky matice L
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Diskriminační analýza

Máme mnohorozměrná data z několika různých, známých
populací a chceme najít nejlepší možný způsob, jak podle
dostupných informací rozlišit skupiny mezi sebou.

Příklad. Uvažujme pacienty s různými nemocemi a mějme ke
každému skupinu lékařských testů. Chceme pak najít způsob,
jak zařadit pacienta do do správné skupiny (určit správně
nemoc, kterou má) jen na základě výsledků testů
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Mnohorozměrné statistické metody

Diskriminační analýza

Diskriminační analýza

Intuitivní postup jak pro pacienta určit správnou skupinu
pro každou skupinu spočítáme průměrný vektor za
všechny proměnné (lékařské testy)
nového pacienta zařadíme do skupiny, která bude mít
průměrný vektor nejblíže k pacientovým výsledkům

Jak dobré je určené rozhodovací pravidlo?
data rozdělíme na 2 části: trénovací a testovací
na trénovací části se naučíme diskriminační pravidlo
na testovací části ho vyzkoušíme
určíme, v kolika procentech případů jsme se na testovací
sadě trefili (klasifikace)
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Diskriminační analýza

Výběr mezi dvěma skupinami
uvažujme pouze dvě populace X1 a X2 s průměry
X1,n,X2,n.
nové pozorování X chceme přiřadit k jedné z těchto
populací
vydálenost X od průměrných vektorů měříme
Mahalanobisovou vzdáleností

D(X,Y) =
√
(X − X)T V−1(X − X)

kde V značí variační matici dat
platí-li

D2(X,X1,n) < D2(X,X2,n),

přiřadíme pozorování k první populaci, v opačném případě
ke druhé
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Diskriminační analýza

Diskriminační analýza

aritmetickými operacemi lze získat vektor

b = S−1(X1,n − X2,n),

rozhodovací pravidlo pak je říká, že pokud

bT X − bT X1,n + X2,n

2
=

k∑
i=1

biXi − b0 > 0

pak pozorování patří do první populace
přidání apriorních pravděpodobností/ velikostí skupin
(např. relativní četnosti nemocí v populaci)
označme π1 a π2 apriorní psti skupin, pak

bT X − bT X1,n + X2,n

2
+ ln

π1

π2
> 0.
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Shluková analýza – hierarchické metody

Hledáme v datech předem neznámé skupiny tak, aby
rozdíly mezi skupinami byly co možná největší,
v rámci skupiny, aby byly hodnoty co nejpodobnější,

Shlukování je založené na měření vzdáleností.
Hierarchické shlukování

postupné shlukování od jednotek po jednu velkou skupinu
nejprve každá jednotka tvoří samostatnou skupinu
spojí se vždy dvě nejbližší skupiny
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Shluková analýza – hierarchické metody

Hierarchické shlukování využívá euklidovskou vzdálenost
Existují různé typy hierarchického shlukování

vzdálenost středů (průměrů) – average linkage
vzdálenost nejbližších bodů – single linkage
vzdálenost nejvzdálenějších bodů – complete linkage
minimalizace variability v rámci skupin – Ward linkage
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Shluková analýza

Shluková analýza – hierarchické metody

Graficky se proces shlukování znázorňuje pomocí
dendrogramu.
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sloučení skupin velká vzdálenost.



Pokročilé statistické metody pro biology

Mnohorozměrné statistické metody

Shluková analýza

Shluková analýza – K-means

Nevýhodou hierarchické metody je, že odlehlé hodnoty v ní
často tvoří samostatné skupiny. Alternativou je použít tzv.
K-means shlukování. Postup je následující

zvolíme počet skupin p
náhodně vybereme p bodů v mnohorozměrném prostoru
jako středy těchto skupin
zařadíme prvek ke skupině s nejbližším středem
středy se přepočítají
poslední dva body se opakují, dokud nejsou rozřazeny
všechny prvky

Nevýhodou tohoto postupu je, že pokud v datech nejsou
jednoznačné skupiny, pak rozřazování dopadne jinak při jiné
volbě náhodných středů.
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