Základy algebry

Martin Kuřil
Studijní materiál byl vytvořen v rámci projektu Univerzita 21. století – Kvalitní, moderní a otevřená instituce, reg. č. CZ.02.2.69/0.0/0.0/16_015/0002408 (KA02 Podpora a rozvoj polytechnických studijních programů).
Úvod

Tento studijní text je ve fázi přípravy. Z toho plynou 2 věci:

1. Text obsahuje chyby (doufám, že jich není mnoho a že nejsou zásadní). Za chyby se omlouvám a budu rád, pokud mne na ně upozorníte – pište prosím na adresu martin.kuril@ujep.cz

I když text ještě není hotov (zpracována však již je celá první část věnovaná grupám), domnívám se, že může dobře sloužit jako studijní text. Text je vhodný pro samostudium a jako studijní opora pro studenty distanční a kombinované formy studia. V textu jsou vyloženy základy teorie grup od zavedení pojmu grupy až po některé hlubší výsledky (Sylowova věta, popis všech konečných komutativních grup). Dále budou postupně vyloženy základy teorie okruhů. Výklad je veden ve volném tempu a je provázen mnoha příklady. Důkazy tvrzení a vět jsou až nezvykle podrobné.

Přeji Vám hodně úspěchů a zábavy při studiu algebry.

Martin Kuřil
Obsah

I Grupy 9

1 Základní pojmy teorie grup 11
 1.1 Definice grupy ... 11
 1.2 Mocniny ... 16
 1.3 Homomorfismy .. 21
 1.4 Podgrupy .. 24
 1.5 Součiny grup .. 31

2 Příklady grup 39
 2.1 Aditivní grupa okruhu .. 39
 2.2 Grupa jednotek okruhu .. 41
 2.3 Symetrická grupa .. 44
 2.4 Alternující grupa .. 50
 2.5 Obecná lineární grupa .. 51
 2.6 Grupa symetrií obrazce .. 53
 2.7 Kvaterniony .. 59

3 Lagrangeova věta a její důsledky 63
 3.1 Lagrangeova věta .. 63
 3.2 Věty Fermatova a Eulerova 69

4 Cyklické grupy 71
 4.1 Popis všech cyklických grup 71
 4.2 Podgrupy cyklických grup 76

5 Akce grupy na množině a Sylowova věta 83
 5.1 Akce grupy na množině .. 83
 5.2 Věty Sylowova a Cauchyova 87
5.3 Centrum grupy 93

6 Faktorové grupy 99
 6.1 Definice faktorové grupy 99
 6.2 Faktorové grupy a homomorfismy 104

7 Konečné (zvláště komutativní) grupy 109
 7.1 Nerozložitelné grupy 109
 7.2 Popis všech konečných komutativních grup ... 113
 7.3 Grupy malých řádů 119

II Okruhy 127

8 Základní pojmy teorie okruhů 129
 8.1 Definice okruhu 129
 8.2 Homomorfismy 133
 8.3 Podokruhy a ideály 139

9 Příklady okruhů 163
 9.1 Okruh kvadratických celých čísel 163
 9.2 Okruh zbytkových tříd 169
 9.3 Maticový okruh 169
 9.4 Okruh polynomů 169

10 Základní pojmy teorie dělitelnosti 171
 10.1 Relace dělitelnosti 171
 10.2 Největší společný dělitel 171
 10.3 Ireducibilní prvky, prvočísla 171
 10.4 Počítání modulo 171

11 Eukleidovské obory 173
 11.1 Definice eukleidovského oboru 173
 11.2 Příklady eukleidovských oborů 173
 11.3 Eukleidův algoritmus 173
 11.4 Jednoznačný rozklad na součin ireducibilních prvků 173
 11.5 Základní věta aritmetiky 173
 11.6 Čínská věta o zbytcích 173
OBSAH

12 Gaussovské obory 175
 12.1 Definice gaussovského oboru 175
 12.2 Příklady gaussovských oborů 175
 12.3 Největší společný dělitel prvků gaussovského oboru 175

13 Kořeny polynomů 177
 13.1 Kořeny polynomů, jejich násobnost a počet 177
 13.2 Základní věta algebry a její důsledky 177
 13.3 Algebraické a transcendentní prvky 177
 13.4 Binomické rovnice 177
 13.5 Kvadratické a kubické rovnice 177
 13.6 Kořeny polynomů nad celými čísly 177
 13.7 Hornerovo schéma 177

14 Konečná tělesa 179
 14.1 Charakteristika tělesa, prvotěleso 179
 14.2 Počet prvků konečného tělesa 179
 14.3 Počet ireducibilních monických polynomů daného stupně .. 179
 14.4 Konstrukce konečných těles 179
Část I
Grupy
Kapitola 1

Základní pojmy teorie grup

1.1 Definice grupy

V celém textu budeme používat následující označení pro číselné množiny:

- \mathbb{N} značí množinu všech přirozených čísel bez nuly, $\mathbb{N} = \{1, 2, 3, \ldots \}$
- \mathbb{N}_0 značí množinu všech přirozených čísel s nulou, $\mathbb{N}_0 = \{0, 1, 2, 3, \ldots \}$
- \mathbb{Z} značí množinu všech celých čísel, $\mathbb{Z} = \{\ldots, -3, -2, -1, 0, 1, 2, 3, \ldots \}$
- \mathbb{Q} značí množinu všech racionálních čísel
- \mathbb{R} značí množinu všech reálných čísel
- \mathbb{C} značí množinu všech komplexních čísel
- \mathbb{Q}^+ značí množinu všech kladných racionálních čísel
- \mathbb{R}^+ značí množinu všech kladných reálných čísel
- \mathbb{S} značí množinu všech sudých celých čísel, $\mathbb{S} = \{\ldots, -4, -2, 0, 2, 4, \ldots \}$
- \mathbb{Q}^* značí množinu všech racionálních čísel bez nuly
- \mathbb{R}^* značí množinu všech reálných čísel bez nuly
- \mathbb{C}^* značí množinu všech komplexních čísel bez nuly
Mohutnost (kardinalitu) množiny M budeme značit $\text{card}(M)$. Speciellně, jestliže M je konečná množina, pak $\text{card}(M)$ označuje počet prvků množiny M.

V kapitole 1 jsou opravdu uvedeny základní pojmy a poznatky. Dále, v průběhu výkladu, je budeme používat zcela běžně, velmi často bez odkazu na příslušnou definici, tvrzení či větu.

1.1.1. Definice. Nechť A je množina. Zobrazení množiny $A \times A$ do množiny A se nazývá (binární) operace na množině A. Je-li \ast operace na množině A, pak místo $\ast((x, y))$ píšeme $x \ast y$ (pro všechna $x, y \in A$).

1.1.2. Definice. Nechť \ast a \Box jsou binární operace na množině A.

1. Říkáme, že operace \ast je asociativní, pokud pro všechna $x, y, z \in A$ platí
$$x \ast (y \ast z) = (x \ast y) \ast z.$$

2. Říkáme, že operace \ast je komutativní, pokud pro všechna $x, y \in A$ platí
$$x \ast y = y \ast x.$$

3. Říkáme, že operace \Box je distributivní vzhledem k operaci \ast, pokud pro všechna $x, y, z \in A$ platí
$$x \Box (y \ast z) = (x \Box y) \ast (x \Box z), \ (y \ast z) \Box x = (y \Box x) \ast (z \Box x).$$

4. Nechť $e \in A$. Říkáme, že e je neutrální prvek operace \ast, pokud pro všechna $x \in A$ platí
$$e \ast x = x, \ x \ast e = x.$$

5. Nechť $e, x, y \in A$, e je neutrální prvek operace \ast. Říkáme, že prvek y je inverzní (inverze) k prvku x vzhledem k operaci \ast, pokud platí
$$x \ast y = e, \ y \ast x = e.$$

1.1.3. Tvrzení.

1. Každá operace má nejvýše jeden neutrální prvek.
1.1. DEFINICE GRUPY

2. Pro každou asociativní operaci s neutrálním prvkem platí: Ke každému prvků existuje nejvýšě jeden prvek inverzní.

DŮKAZ.

1. Nechť * je operace na množině A. Nechť e_1, e_2 jsou neutrální prvky operace *. Chceme: e_1 = e_2. Počítejme: e_1 = e_1 * e_2 = e_2 (první rovnost plynule z toho, že e_2 je neutrální, druhá rovnost plynule z toho, že e_1 je neutrální).

2. Nechť * je asociativní operace na množině A s neutrálním prvkem e. Nechť x, y_1, y_2 ∈ A, y_1 a y_2 jsou inverze k x. Chceme: y_1 = y_2. Počítejme:

\[y_1 = y_1 * e = y_1 * (x * y_2) = (y_1 * x) * y_2 = e * y_2 = y_2. \]

V případě binárních operací se velmi často používá multiplikativní nebo aditivní symbolika.

Multiplikativní symbolika: Operace se značí · a nazývá se násobení. Neutrální prvek se značí 1 a nazývá se jednotkový prvek. Inverzní prvek k prvku x se značí \(x^{-1} \) nebo \(\frac{1}{x} \).

Aditivní symbolika: Používá se především pro komutativní operace. Operace se značí + a nazývá se sčítání. Neutrální prvek se značí 0 a nazývá se nulový prvek. Inverzní prvek k prvku x se značí \(-x \) a nazývá se opačný prvek k prvku x.

1.1.4. Definice. **Grupa** je množina spolu s binární operací, jež je asociativní, má neutrální prvek a každý prvek má prvek inverzní.

1.1.5. **Tvrzení.** Nechť G je grupa, \(x, y \in G \). Platí:

1. \((x^{-1})^{-1} = x \)

2. \((x \cdot y)^{-1} = y^{-1} \cdot x^{-1} \)

(*Použili jsme multiplikativní symboliku.*

DŮKAZ.

1. Důkaz přenecháváme čtenáři.
2. Je třeba ukázat, že platí dvě rovnosti: \((x \cdot y) \cdot (y^{-1} \cdot x^{-1}) = 1, (y^{-1} \cdot x^{-1}) \cdot (x \cdot y) = 1\). Počítejme:
\[
(x \cdot y) \cdot (y^{-1} \cdot x^{-1}) = x \cdot (y \cdot y^{-1}) \cdot x^{-1} = x \cdot 1 \cdot x^{-1} = x \cdot x^{-1} = 1,
\]
\[
(y^{-1} \cdot x^{-1}) \cdot (x \cdot y) = y^{-1} \cdot (x^{-1} \cdot x) \cdot y = y^{-1} \cdot 1 \cdot y = y^{-1} \cdot y = 1.
\]

Nyní tři poznámky k terminologii a jedna k symbolice:

1. Grupa s jedním prvkem se nazývá triviální. Grupy, které mají více než jeden prvek, se nazývají netriviální.

2. Říkáme, že grupa je komutativní (neboli Abelova), pokud binární operace v grupě je komutativní.

3. Počet prvků konečné grupy \(G\) nazýváme řád grupy \(G\). Tedy řád grupy \(G\) je číslo \(\text{card}(G)\).

4. Jestliže používáme multiplikativní symboliku, pak místo \(x \cdot y\) často píšeme \(xy\) (týká se to samozřejmě libovolných prvků \(x, y\)).

1.1.6. Tvrzení. (zákony o krácení) Buď \(G\) grupa, \(x, y, z \in G\). Pak platí:

1. Jestliže \(xy = xz\), pak \(y = z\).

2. Jestliže \(yx = zx\), pak \(y = z\).

Důkaz.

1. Nechť \(xy = xz\). Pak
\[
y = 1y = (x^{-1}x)y = x^{-1}(xy) = x^{-1}(xz) = (x^{-1}x)z = 1z = z.
\]

2. Obdobně jako část 1.

Nechť \(G\) je konečná grupa řádu \(n\), \(G = \{a_1, a_2, \ldots, a_n\}\). Multiplikativní tabulka (tabulka násobení) grupy \(G\) je následující schéma:

\[
\begin{array}{c|cccc}
 & a_1 & a_2 & \cdots & a_n \\
\hline
a_1 & a_1 \cdot a_1 & a_1 \cdot a_2 & \cdots & a_1 \cdot a_n \\
a_2 & a_2 \cdot a_1 & a_2 \cdot a_2 & \cdots & a_2 \cdot a_n \\
\vdots & \vdots & \ddots & \cdots & \vdots \\
a_n & a_n \cdot a_1 & a_n \cdot a_2 & \cdots & a_n \cdot a_n \\
\end{array}
\]
1.1. DEFINICE GRUPI

V každém řádku multiplikativní tabulky jsou vypsány v určitém pořadí všechny prvky grupy \(G \). Zdůvodnění: Nechť \(i \in \{1, 2, \ldots, n\} \). Tvrdíme, že prvky \(a_i \cdot a_1, a_i \cdot a_2, \ldots, a_i \cdot a_n \) jsou navzájem různé. Kdyby tomu tak nebylo, bylo by \(a_i \cdot a_k = a_i \cdot a_l \) pro nějaká \(k, l \in \{1, 2, \ldots, n\}, k \neq l \). Pak by ovšem bylo \(a_k = a_l, k = l \) (užili jsme zákon o krácení), což by byl spor.

Obdobně platí, že v každém sloupci multiplikativní tabulky jsou vypsány v určitém pořadí všechny prvky grupy \(G \).

Bývá zvykem sestrojovat multiplikativní tabulku tak, že \(a_1 \) je neutrální prvek.

1.1.7. Příklad. Buď \(G \subseteq \mathbb{C}, G = \{1, i, -1, -i\} \). Snadno se lze přesvědčit, že pro všechna \(x, y \in G \) je \(x \cdot y \in G \) (operace násobení je zde obvyklé násobení komplexních čísel). Tudíž: násobení komplexních čísel je operace na množině \(G \). Tato operace je asociativní, má neutrální prvek \(1 \) a ke každému prvku existuje prvek inverzní \((1^{-1} = 1, i^{-1} = -i, (-1)\cdot i = -1, (-i)\cdot i = i) \). Pravě jsme ověřili, že \(G \) spolu s operací násobení komplexních čísel je grupa.

Sestrojíme multiplikativní tabulku grupy \(G \):

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>i</th>
<th>-1</th>
<th>-i</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>i</td>
<td>-1</td>
<td>-i</td>
</tr>
<tr>
<td>i</td>
<td>i</td>
<td>-1</td>
<td>-i</td>
<td>1</td>
</tr>
<tr>
<td>-1</td>
<td>-1</td>
<td>-i</td>
<td>1</td>
<td>i</td>
</tr>
<tr>
<td>-i</td>
<td>-i</td>
<td>1</td>
<td>i</td>
<td>-1</td>
</tr>
</tbody>
</table>

Uvedeme nyní několik málo příkladů grup. V této souvislosti upozorňujeme, že celá druhá kapitola tohoto studijního textu je věnována příkladům grup.

1.1.8. Příklad.

1. Množiny \(S, Z, Q, R, C \) spolu s operací sčítání jsou nekonečné komutativní grupy. Neutrálním prvkem je číslo \(0 \).

2. Množiny \(Q^+, R^+, C^+, Q^0, R^0 \) spolu s operací násobení jsou nekonečné komutativní grupy. Neutrálním prvkem je číslo \(1 \).

1.2 Mocniny

1.2.1. Definice. Nechť G je grupa, $a \in G$, k je kladné celé číslo. Klademe
$$a^k = a \cdot a \cdot a \cdot \ldots \cdot a.$$

1.2.2. Tvrzení. Nechť G je grupa, $a \in G$, k, l jsou kladná celá čísla. Pak platí:
1. $a^k \cdot a^l = a^{k+l}$
2. $(a^k)^l = a^{k \cdot l}$

Důkaz.

1. $a^k \cdot a^l = (a \cdot \ldots \cdot a) \cdot (a \cdot \ldots \cdot a) = a \cdot \ldots \cdot a = a^{k+l}$
2. $(a^k)^l = (a \cdot \ldots \cdot a) \cdot (a \cdot \ldots \cdot a) \ldots (a \cdot \ldots \cdot a) = a \cdot \ldots \cdot a = a^{k \cdot l}$

1.2.3. Tvrzení. Nechť G je grupa, $a \in G$, k je kladné celé číslo. Pak platí:
$$\left(a^{-1}\right)^k = (a^k)^{-1}.$$

Důkaz. Postupujme indukcí vzhledem ke k.

1. Nechť $k = 1$. Platí: $(a^{-1})^1 = a^{-1}$, $(a^1)^{-1} = a^{-1}$.

2. Nechť $k \geq 1$. Indukční předpoklad: $(a^{-1})^k = (a^k)^{-1}$.
Chceme: $(a^{-1})^{k+1} = (a^{k+1})^{-1}$. Počítejme:
$$\left(a^{k+1}\right)^{-1} = (a^k \cdot a)^{-1} = a^{-1} \cdot (a^k)^{-1} = a^{-1} \cdot (a^{-1})^k = (a^{-1})^{k+1}.$$
1.2.4. **Definice.** Nechť G je grupa, $a \in G$, k je záporné celé číslo. Klademe

$$a^0 = 1, \quad a^k = (a^{-1})^{−k} = (a^{-k})^{-1}.$$

1.2.5. **Věta.** Nechť G je grupa, $a \in G$, k,l jsou celá čísla. Pak platí:

1. $a^k \cdot a^l = a^{k+l}$
2. $(a^k)^l = a^{k \cdot l}$

Důkaz.

1. Jestliže $k = 0$, pak
 $$a^k \cdot a^l = a^0 \cdot a^l = 1 \cdot a^l = a^l,$$
 $a^{k+l} = a^{0+l} = a^l.$

Jestliže $l = 0$, pak
 $$a^k \cdot a^l = a^k \cdot a^0 = a^k \cdot 1 = a^k,$$
 $a^{k+l} = a^{k+0} = a^k.$

Nechť tedy $k \neq 0$, $l \neq 0$. Rozdělíme důkaz do čtyř částí:

(I) $k > 0$, $l > 0$
(II) $k > 0$, $l < 0$
(III) $k < 0$, $l > 0$
(IV) $k < 0$, $l < 0$

ad (I): Tvrzení plyne z 1.2.2.
al (II): Rozdělíme důkaz do tří částí:
(a) $k > -l$
(b) $k = -l$
(c) $k < -l$
ad (a): $a^k \cdot a^l = \underbrace{a \cdots a}_{k} \cdot \underbrace{a^{-1} \cdots a^{-1}}_{-l} = a^{k-(-l)} = a^{k+l}$
ad (b): $a^k \cdot a^l = \underbrace{a \cdots a}_{k} \cdot \underbrace{a^{-1} \cdots a^{-1}}_{-l} = 1 = a^0 = a^{k+l}$
ad (c): $a^k \cdot a^l = \underbrace{a \cdots a}_{k} \cdot \underbrace{a^{-1} \cdots a^{-1}}_{-l} = (a^{-1})^{-l-(-k)} = (a^{-1})^{-k} = a^{(k+l)} = a^{k+l}$
ad (III): Rozdělíme důkaz do tří částí:
(a) $-k < l$
(b) $-k = l$
KAPITOLA 1. ZÁKLADNÍ POJMY TEORIE GRUP

Položme

Buď

ad (a):

ad (b):

ad (c):

ad (IV):

ad (II):

ad (IV):

2. Jestliže

ad (I): Tvrzení plyne z 1.2.2.

ad (II):

ad (III):

ad (IV):

1.2.6. Definice. Nechť

Jestliže existuje kladné celé číslo

takové, že , pak řád prvku je

Jestliže pro všechna kladná celá čísla je , pak řád prvku je .

1.2.7. Tvrzení. Nechť

je konečná grupa řádu . Pak všechny prvky grupy

mají konečný řád menší nebo rovny číslo . (Poznámka: Uvidíme později, že řád každého prvku grupy je .)

1.2.8. Příklad.

1. Pro každý prvek a grupy G platí:
 prvek a má řád 1 právě tehdy, když $a = 1$.

2. V libovolné grupě jsou řády prvků a, a^{-1} stejné. Zdůvodnění: Nechť k
 je celé číslo. Pak

 $a^k = 1$ právě tehdy, když $(a^{-1})^k = 1$.

1.2.9. Poznámka. Při použití aditivní symboliky místo a^n píšeme na. Buď a
 prvek grupy C (s operací sčítání), buď n celé číslo. Pak $na = n \cdot a$
 (zde $n \cdot a$ označuje součin celého čísla n a komplexního čísla a). Zdůvodnění
 rozdělíme na 3 případy:
 (I) $n = 0$
 (II) $n > 0$
 (III) $n < 0$.

 ad (I): $0a = 0$ (viz definici 1.2.4.), $0 \cdot a = 0$

 ad (II): $na = a + \cdots + a = (1 + \cdots + 1) \cdot a = n \cdot a$

 ad (III): $na = (-n)(-a) = (-n) \cdot (-a) = n \cdot a$.

1.2.10. Příklad. Uvažme grupu \mathbb{Z} s operací sčítání. Číslo 0 má řád 1, ostatní
 čísla mají řád ∞ (pro každé kladné celé číslo k a každé $x \in \mathbb{Z}$, $x \neq 0$, totiž
 máme $k \cdot x \neq 0$).

1.2.11. Příklad. Uvažme grupu \mathbb{C}^\times s operací násobení. Najděme všechna
 čísla řádu 4. Jestliže $x \in \mathbb{C}^\times$, x má řád 4, pak $x^4 = 1$. Takže $x \in \{1, i, -1, -i\}$. Počítejme:
 $1^1 = 1$
 $i^1 = i$, $i^2 = -1$, $i^3 = -i$, $i^4 = 1$
 $(-1)^1 = -1$, $(-1)^2 = 1$
 $(-i)^1 = -i$, $(-i)^2 = -1$, $(-i)^3 = i$, $(-i)^4 = 1$
 Zjistili jsme, že 1 má řád 1, i má řád 4, -1 má řád 2, $-i$ má řád 4. Uzavíráme:
 grupa \mathbb{C}^\times má dva prvky řádu 4, totiž i a $-i$.

Podívejme se ještě na umocňování prvků v komutativních grupách. Samozřejmě,
dosud uvedená pravidla platí ve všech grupách, tedy také v ko-
mutativních. Avšak v komutativních grupách navíc platí
1.2.12. Věta. Nechť G je komutativní grupa, $a, b \in G$, k je celé číslo. Pak

$$(a \cdot b)^k = a^k \cdot b^k.$$

Důkaz. Rozdělíme důkaz na tři případy:

(I) $k > 0$

(II) $k = 0$

(III) $k < 0$

ad (I): Postupujme indukcí vzhledem ke k.

Nechť $k = 1$. Pak $(a \cdot b)^1 = a \cdot b$, a $1 \cdot b^1 = a \cdot b$.

Nechť $k \geq 1$. Indukční předpoklad: $(a \cdot b)^k = a^k \cdot b^k$. Chceme: $(a \cdot b)^{k+1} = a^{k+1} \cdot b^{k+1}$.

Počítejme:

$(a \cdot b)^{k+1} = (a \cdot b)^k \cdot (a \cdot b) = a^k \cdot b^k \cdot a \cdot b = (a \cdot a) \cdot (b \cdot b) = a^{k+1} \cdot b^{k+1}.$

ad (II): Je $(a \cdot b)^0 = 1, a^0 \cdot b^0 = 1 \cdot 1 = 1$.

ad (III): Budeme počítat a při výpočtu použijeme již dokázanou část (I):

$(a \cdot b)^k = ((a \cdot b)^{-k})^{-1} = (a^{-k} \cdot b^{-k})^{-1} = (b^{-k})^{-1} \cdot (a^{-k})^{-1} = b^k \cdot a^k = a^k \cdot b^k.$

Nechť G je grupa, $a \in G$, a má konečný řád n. Je $a^n = 1$. Zabývejme se nyní určením všech celých čísel k splňujících $a^k = 1$.

1.2.13. Tvrzení. Nechť G je grupa, $a \in G$, a má konečný řád n. Pro každé celé číslo k platí

$$a^k = 1 \iff n/k.$$

Důkaz.

1. Předpokládejme, že $a^k = 1$. Vydělme se zbytkem číslo k nčíslem n.

Existují celá čísla q, r, $0 \leq r < n$, splňující $k = nq + r$. Potom

$$a^k = a^{nq+r} = (a^n)^q \cdot a^r = 1^q \cdot a^r = 1 \cdot a^r = a^r.$$

Takže $a^r = 1$. Jelikož $0 \leq r < n$ a n je řád prvku a, musí být $r = 0$. Takže $k = nq, n/k$.

2. Předpokládejme, že n/k. Existuje tedy celé číslo q splňující $k = nq$.

Potom

$$a^k = a^{nq} = (a^n)^q = 1^q = 1.$$
1.3 Homomorfismy

1.3.1. Definice. Nechť G_1, G_2 jsou grupy, $\varphi : G_1 \to G_2$. Zobrazení φ se nazývá homomorfismus grupy G_1 do grupy G_2, pokud pro všechna $x, y \in G_1$ platí
\[\varphi(x \cdot y) = \varphi(x) \cdot \varphi(y). \]

1.3.2. Tvrzení. Nechť G_1, G_2 jsou grupy, $\varphi : G_1 \to G_2$ je homomorfismus. Platí:
1. $\varphi(1) = 1$
2. $\varphi(x^{-1}) = (\varphi(x))^{-1}$ (pro libovolné $x \in G_1$).

Důkaz.
1. $\varphi(1) = \varphi(1 \cdot 1) = \varphi(1) \cdot \varphi(1)$, takže $\varphi(1) \cdot 1 = \varphi(1) \cdot \varphi(1)$ a použijeme zákon o krácení.
2. $\varphi(x) \cdot (\varphi(x))^{-1} = 1 = \varphi(1) = \varphi(x \cdot x^{-1}) = \varphi(x) \cdot \varphi(x^{-1})$ a použijeme zákon o krácení.

1.3.3. Tvrzení. Nechť G_1, G_2, G_3 jsou grupy, $\varphi : G_1 \to G_2$, $\psi : G_2 \to G_3$ jsou homomorfismy. Pak $\varphi \psi : G_1 \to G_3$ je homomorfismus.

Důkaz. Buďte $x, y \in G_1$. Pak $(\varphi \psi)(x \cdot y) = \psi(\varphi(x \cdot y)) = \psi(\varphi(x) \cdot \varphi(y)) = \psi(\varphi(x)) \cdot \psi(\varphi(y)) = (\varphi \psi)(x) \cdot (\varphi \psi)(y)$.

1.3.4. Příklad. Nechť G_1, G_2 jsou grupy. Definujeme zobrazení $\varphi : G_1 \to G_2$. Pro každé $x \in G_1$ položíme $\varphi(x) = 1$. Pak φ je homomorfismus. Zdůvodnění: Buďte $x, y \in G_1$. Pak $\varphi(x \cdot y) = 1, \varphi(x) \cdot \varphi(y) = 1 \cdot 1 = 1$.

1.3.5. Příklad. Nechť $\varphi : Z \to Z$, $\varphi(x) = 3 \cdot x$ pro každé $x \in Z$. Pak φ je homomorfismus. Zdůvodnění: Buďte $x, y \in Z$. Pak $\varphi(x + y) = 3 \cdot (x + y) = 3 \cdot x + 3 \cdot y = \varphi(x) + \varphi(y)$.
1.3.6. Příklad. Uvažujme grupu \(\mathbb{Z} \) s operací sčítání a grupu \(\mathbb{Q}^* \) s operací násobení. Definujme zobrazení \(\varphi: \mathbb{Z} \to \mathbb{Q}^* \) takto:

\[
\varphi(x) = \begin{cases}
1 & x \in S \\
-1 & x \in \mathbb{Z} - S.
\end{cases}
\]

Pak \(\varphi \) je homomorfní zobrazení grup. Zdůvodnění: Zvolme libovolně \(x, y \in \mathbb{Z} \). Potřebujeme, aby \(\varphi(x + y) = \varphi(x) \cdot \varphi(y) \). Rozlišíme 4 případy:

(I) \(x \) je sudé, \(y \) je sudé
(II) \(x \) je sudé, \(y \) je liché
(III) \(x \) je liché, \(y \) je sudé
(IV) \(x \) je liché, \(y \) je liché.

Ad (I): Číslo \(x + y \) je sudé. Takže \(\varphi(x + y) = 1 \), \(\varphi(x) \cdot \varphi(y) = 1 \cdot 1 = 1 \).

Ad (II): Číslo \(x + y \) je liché. Takže \(\varphi(x + y) = -1 \), \(\varphi(x) \cdot \varphi(y) = 1 \cdot (-1) = -1 \).

Ad (III): Číslo \(x + y \) je liché. Takže \(\varphi(x + y) = -1 \), \(\varphi(x) \cdot \varphi(y) = (-1) \cdot 1 = -1 \).

Ad (IV): Číslo \(x + y \) je sudé. Takže \(\varphi(x + y) = 1 \), \(\varphi(x) \cdot \varphi(y) = (-1) \cdot (-1) = 1 \).

Zabývejme se nyní otázkou, kdy dvě grupy \(G_1, G_2 \) jsou v podstatě stejné, i když třeba mají jiné prvky. Předpokládejme nejprve, že grupa \(G_1 \) je konečná řádu \(n \). Pak zřejmě grupa \(G_2 \) musí být konečná a musí mít stejný počet prvků jako \(G_1 \), tj. \(G_2 \) má řád \(n \). Nechť grupa \(G_1 \) má prvky \(a_1, a_2, \ldots, a_n \). Jestliže grupa \(G_2 \) je v podstatě stejná jako grupa \(G_1 \), pak prvky grupy \(G_2 \) lze seřadit do posloupnosti \(b_1, b_2, \ldots, b_n \) tak, že multiplikativní tabulka grupy \(G_1 \) je v podstatě stejná, jako multiplikativní tabulka grupy \(G_2 \). Co tím mínime?

Zvolme libovolně \(i, j \in \{1, 2, \ldots, n\} \). V tabulce grupy \(G_1 \) na pozici \((i, j)\) je prvek \(a_i \cdot a_j = a_k \), v tabulce grupy \(G_2 \) na pozici \((i, j)\) je prvek \(b_i \cdot b_j = b_k \). Jestliže multiplikativní tabulka grupy \(G_1 \) je v podstatě stejná, jako multiplikativní tabulka grupy \(G_2 \), pak \(k = l \). Seřazení \(b_1, b_2, \ldots, b_n \) dává bijekci \(\varphi: G_1 \to G_2 \) takovou, že \(\varphi(a_1) = b_1, \varphi(a_2) = b_2, \ldots, \varphi(a_n) = b_n \). Tato bijekce pro libovolná \(i, j \in \{1, 2, \ldots, n\} \) splňuje

\[
\varphi(a_i \cdot a_j) = \varphi(a_k) = b_k = b_i \cdot b_j = \varphi(a_i) \cdot \varphi(a_j).
\]

 Shrňme tedy, co jsme zjistili:

Jestliže dvě konečné grupy \(G_1, G_2 \) jsou v podstatě stejná, pak existuje bijekce \(\varphi: G_1 \to G_2 \) taková, že pro všechna \(x, y \in G_1 \) je \(\varphi(x \cdot y) = \varphi(x) \cdot \varphi(y) \).

Výše uvedená úvaha nás motivuje k následující definici. Přitom se již neomezujeme na konečné grupy a slovní obrat "grupy \(G_1, G_2 \) jsou v podstatě stejná" nahrazujeme obratem "grupy \(G_1, G_2 \) jsou izomorfní".
1.3. HOMOMORFISMY

1.3.7. Definice. Nechť G_1, G_2 jsou grupy. Říkáme, že grupy G_1, G_2 jsou izomorfní, pokud existuje bijekce $\varphi : G_1 \to G_2$ splňující

$$\varphi(x \cdot y) = \varphi(x) \cdot \varphi(y)$$

pro všechna $x, y \in G_1$. To, že grupy G_1, G_2 jsou izomorfní, zapisujeme symbolicky $G_1 \cong G_2$. Zobrazení φ nazýváme izomorfismus grupy G_1 na grupu G_2. (Všimněme si, že izomorfismus je totéž, co bijektivní homomorfismus.)

1.3.8. Tvrzení. Nechť G je grupa. Zobrazení $id : G \to G$ dané předpisem $id(x) = x$ pro každý $x \in G$, je izomorfismus.

Důkaz. Důkaz přenecháváme čtenáři.

1.3.9. Tvrzení. Nechť G_1, G_2 jsou grupy, $\varphi : G_1 \to G_2$ je izomorfismus. Pak $\varphi^{-1} : G_2 \to G_1$ je izomorfismus.

Důkaz. Ze základů matematiky víme, že $\varphi^{-1} : G_2 \to G_1$ je bijekce. Zvolme $x, y \in G_2$. Chceme: $\varphi^{-1}(x \cdot y) = \varphi^{-1}(x) \cdot \varphi^{-1}(y)$. Protože zobrazení φ je prosté, tak stačí ukázat, že $\varphi(\varphi^{-1}(x \cdot y)) = \varphi(\varphi^{-1}(x) \cdot \varphi^{-1}(y))$. Ovšem

$$\varphi(\varphi^{-1}(x \cdot y)) = x \cdot y,$$

$$\varphi(\varphi^{-1}(x) \cdot \varphi^{-1}(y)) = \varphi(\varphi^{-1}(x)) \cdot \varphi(\varphi^{-1}(y)) = x \cdot y.$$

1.3.10. Tvrzení. Nechť G_1, G_2, G_3 jsou grupy, $\varphi : G_1 \to G_2$ je izomorfismus, $\psi : G_2 \to G_3$ je izomorfismus. Pak $\varphi\psi : G_1 \to G_3$ je izomorfismus.

Důkaz. Ze základů matematiky víme, že $\varphi\psi$ je bijekce. Pak stačí použít tvrzení 1.3.3.

1.3.11. Tvrzení. Nechť G je grupa. Pak $G \cong G$.

Důkaz. Důkaz přenecháváme čtenáři.

1.3.12. Tvrzení. Nechť G_1, G_2 jsou grupy. Jelikož $G_1 \cong G_2$, pak $G_2 \cong G_1$.

Důkaz. Důkaz přenecháváme čtenáři.

1.3.13. Tvrzení. Nechť G_1, G_2, G_3 jsou grupy. Jelikož $G_1 \cong G_2$ a $G_2 \cong G_3$, pak $G_1 \cong G_3$.
Důkaz. Důkaz přenecháváme čtenáři.

1.3.14. Příklad. Grupy \(Z, S \) (obě s operací sčítání) jsou izomorfní. Izomorfismem je zobrazení \(\varphi : Z \to S \) dané předpisem \(\varphi(x) = 2x \) (pro všechna \(x \in Z \)).

1.3.15. Příklad. Grupa \(\mathbb{R} \) s operací sčítání a grupa \(\mathbb{R}^+ \) s operací násobení jsou izomorfní. Izomorfismem je zobrazení \(\varphi : \mathbb{R} \to \mathbb{R}^+ \) dané předpisem \(\varphi(x) = \exp(x) \) (pro všechna \(x \in \mathbb{R} \)). Vskutku, ze základů matematické analýzy víme, že \(\varphi \) je bijekce. Dále, nechť \(x, y \in \mathbb{R} \). Pak
\[
\varphi(x + y) = \exp(x + y) = \exp(x) \cdot \exp(y) = \varphi(x) \cdot \varphi(y).
\]

1.4 Podgrupy

Mějme nějakou grupu \(G \) a nějakou její podmnožinu \(H \) (tj. \(H \subseteq G \)). Jsou-li \(x, y \in H \), pak v grupě \(G \) lze určit součin \(x \cdot y \). Samozřejmě, pro všechna \(x, y, z \in H \) je \(x \cdot (y \cdot z) = (x \cdot y) \cdot z \). Zdá se tedy, že podmnožina \(H \) bude sama grupou, budeme-li prvky z množiny \(H \) násobit stejně, jako násobíme tyto prvky v grupě \(G \). Uvažme například grupu \(\mathbb{Z} \) a \(H = \{1, 2\} \). Pak \(1 \in H \), \(2 \in H \), avšak \(1 + 2 = 3 \notin H \). Tudíž, aby podmnožina \(H \) byla grupa, musí pro všechna \(x, y \in H \) platit:
\[
x \in H \land y \in H \Rightarrow x \cdot y \in H.
\]

Aby podmnožina \(H \) byla grupa, musí také obsahovat nějaký neutrální prvek \(e \). Pak bude v \(H \) platit \(e \cdot e = e \). Jisté těž v \(G \) platí \(1 \cdot e = e \) (1 je neutrální prvek grupy \(G \)). Protože v \(H \) násobíme stejně jako v \(G \), nutně \(e \cdot e = 1 \cdot e \). Zákon o krácení dává \(e = 1 \). Dostáváme další požadavek zajišťující, aby podmnožina \(H \) byla grupa:
\[
1 \in H.
\]

Dále, aby podmnožina \(H \) byla grupa, musí pro každé \(x \in H \) existovat \(y \in H \) takové, že \(x \cdot y = 1 \), \(y \cdot x = 1 \) (násobíme v \(H \)). Protože v grupě \(G \) je \(x \cdot x^{-1} = 1 \) a v \(H \) násobíme stejně jako v \(G \), máme \(x \cdot y = x \cdot x^{-1} \). Zákon o krácení dává \(y = x^{-1} \). Dostáváme další (již poslední) požadavek zajišťující, aby podmnožina \(H \) byla grupa. Pro všechna \(x \in H \) musí platit
\[
x \in H \Rightarrow x^{-1} \in H.
\]
1.4. PODGRUPY

Provedená úvaha nás motivuje k následující definici, která popisuje ty podmnožiny \(H \) grupy \(G \), jež jsou grupami, násobíme-li prvky z \(H \) stejně jako v \(G \). Takovéto podmnožiny budeme nazývat podgrupy.

1.4.1. Definice. Nechť \(G \) je grupa, \(H \subseteq G \). Říkáme, že \(H \) je podgrupa grupy \(G \), pokud platí:

1. \(1 \in H \)
2. Jestliže \(x \in H \), pak \(x^{-1} \in H \).
3. Jestliže \(x, y \in H \), pak \(x \cdot y \in H \).

1.4.2. Příklad. Nechť \(G \) je grupa. Pak \(\{1\} \) a \(G \) jsou podgrupy grupy \(G \). Každá podgrupa \(H \) grupy \(G \), pro kterou \(H \neq G \), se nazývá vlastní. Podgrupa \(\{1\} \) se nazývá triviální podgrupa.

1.4.3. Příklad. \(S \) je podgrupa grupy \(Z \), \(Z \) je podgrupa grupy \(Q \), \(Q \) je podgrupa grupy \(R \), \(R \) je podgrupa grupy \(C \) (uvažujeme operaci sčítání čísel).

1.4.4. Příklad. \(\mathbb{Q}^\times \) je podgrupa grupy \(\mathbb{R}^\times \), \(\mathbb{R}^\times \) je podgrupa grupy \(\mathbb{C}^\times \) (uvažujeme operaci násobení čísel).

1.4.5. Příklad. Buď \(H = \{x \in \mathbb{C} \mid |x| = 1\} \). Pak \(H \) je podgrupa grupy \(\mathbb{C}^\times \) a \(\{1, -1\} \) je podgrupa grupy \(H \).

1.4.6. Tvrzení. Nechť \(G \) je grupa, \(H_1, H_2 \) jsou podgrupy grupy \(G \). Pak \(H_1 \cap H_2 \) je podgrupa grupy \(G \).

Důkaz. Je třeba ukázat tři věci:

(I) \(1 \in H_1 \cap H_2 \)
(II) Jestliže \(x \in H_1 \cap H_2 \), pak \(x^{-1} \in H_1 \cap H_2 \).
(III) Jestliže \(x, y \in H_1 \cap H_2 \), pak \(x \cdot y \in H_1 \cap H_2 \).

ad (I): Protože \(H_1 \), \(H_2 \) jsou podgrupy, je \(1 \in H_1 \), \(1 \in H_2 \). Pak ovšem \(1 \in H_1 \cap H_2 \).

ad (II): Nechť \(x \in H_1 \cap H_2 \). Chceme: \(x^{-1} \in H_1 \cap H_2 \). Je \(x \in H_1 \), \(x \in H_2 \). Protože \(H_1 \), \(H_2 \) jsou podgrupy, je \(x^{-1} \in H_1 \), \(x^{-1} \in H_2 \). Pak \(x^{-1} \in H_1 \cap H_2 \).

ad (III): Nechť \(x, y \in H_1 \cap H_2 \). Chceme: \(x \cdot y \in H_1 \cap H_2 \). Protože \(x, y \in H_1 \cap H_2 \),
máme \(x, y \in H_1 \) a také \(x, y \in H_2 \). Jelikož \(H_1 \) je podgrupa, je \(x \cdot y \in H_1 \). Jelikož \(H_2 \) je podgrupa, je \(x \cdot y \in H_2 \). Celkem: \(x \cdot y \in H_1 \cap H_2 \).

1.4.7. Tvrzení. Nechť \(G \) je grupa, \(H_i \) pro \(i \in I \) (\(I \neq \emptyset \)) jsou podgrupy grupy \(G \). Pak \(\bigcap_{i \in I} H_i \) je podgrupa grupy \(G \).

Důkaz. Důkaz přenecháváme čtenáři.

1.4.8. Definice. Nechť \(G_1, G_2 \) jsou grupy, \(\varphi : G_1 \to G_2 \) je homomorfismus. Definujeme játro homomorfismu \(\varphi \) jako
\[
\ker \varphi = \{ x \in G_1 | \varphi(x) = 1 \}
\]
a obraz homomorfismu \(\varphi \) jako
\[
im \varphi = \{ \varphi(x) | x \in G_1 \}.
\]

1.4.9. Příklad. Uvažme homomorfismus \(\varphi : \mathbb{Z} \to \mathbb{Q}^\times \) z příkladu 1.3.6. Pak \(\ker \varphi = \mathbb{S} \), im \(\varphi = \{1, -1\} \).

1.4.10. Tvrzení. Nechť \(G_1, G_2 \) jsou grupy, \(\varphi : G_1 \to G_2 \) je homomorfismus. Pak \(\ker \varphi \) je podgrupa grupy \(G_1 \) a im \(\varphi \) je podgrupa grupy \(G_2 \).

Důkaz. Nejprve dokážeme, že \(\ker \varphi \) je podgrupa grupy \(G_1 \). Je třeba ukázat tři věci:
(I) \(1 \in \ker \varphi \)
(II) Jestliže \(x \in \ker \varphi \), pak \(x^{-1} \in \ker \varphi \).
(III) Jestliže \(x, y \in \ker \varphi \), pak \(x \cdot y \in \ker \varphi \).
ad (I): Chceme: \(\varphi(1) = 1 \). To však víme (viz 1.3.2.).
ad (II): Nechť \(x \in \ker \varphi \). Chceme: \(x^{-1} \in \ker \varphi \). Protože \(x \in \ker \varphi \), je \(\varphi(x) = 1 \). Počítejme: \(\varphi(x^{-1}) = (\varphi(x))^{-1} = 1^{-1} = 1 \) (použili jsme 1.3.2.). Protože \(\varphi(x^{-1}) = 1 \), je \(x^{-1} \in \ker \varphi \).
ad (III): Nechť \(x, y \in \ker \varphi \). Chceme: \(x \cdot y \in \ker \varphi \). Protože \(x, y \in \ker \varphi \), je \(\varphi(x) = 1 \), \(\varphi(y) = 1 \). Počítejme: \(\varphi(x \cdot y) = \varphi(x) \cdot \varphi(y) = 1 \cdot 1 = 1 \). Protože \(\varphi(x \cdot y) = 1 \), je \(x \cdot y \in \ker \varphi \).
Nyní dokážeme, že im \(\varphi \) je podgrupa grupy \(G_2 \). Je třeba ukázat tři věci:
(I) \(1 \in \im \varphi \)
(II) Jestliže \(y \in \im \varphi \), pak \(y^{-1} \in \im \varphi \).
(III) Jestliže $y, z \in \text{im} \varphi$, pak $y \cdot z \in \text{im} \varphi$.

ad (I): Je $\varphi(1) = 1$ (viz 1.3.2.), takže $1 \in \text{im} \varphi$.

ad (II): Nechť $y \in \text{im} \varphi$. Chceme: $y^{-1} \in \text{im} \varphi$. Protože $y \in \text{im} \varphi$, existuje $x \in G_1$, $y = \varphi(x)$. Pak $y^{-1} = (\varphi(x))^{-1} = \varphi(x^{-1})$ (použili jsme 1.3.2.) a tudíž $y^{-1} \in \text{im} \varphi$.

ad (III): Nechť $y, z \in \text{im} \varphi$. Chceme: $y \cdot z \in \text{im} \varphi$. Protože $y, z \in \text{im} \varphi$, existují $u, v \in G_1$, $y = \varphi(u)$, $z = \varphi(v)$. Pak $y \cdot z = \varphi(u) \cdot \varphi(v) = \varphi(u \cdot v)$ a tudíž $y \cdot z \in \text{im} \varphi$.

K tvrzení 1.4.10. učíme ještě poznámku. Jestliže homorfismus φ je injektivní (prostý), pak zobrazení $\varphi : G_1 \to \text{im} \varphi$ je injektivní a surjektivní současně, tj. je to bijekce. Tudíž, jestliže homomorfismus φ je injektivní, pak zobrazení $\varphi : G_1 \to \text{im} \varphi$ je izomorfismus $G_1 \cong \text{im} \varphi$.

1.4.11. Definice. Nechť G je grupa, $M \subseteq G$, $H \subseteq G$. Říkáme, že H je podgrupa grupy G generovaná množinou M, pokud platí:

1. H je podgrupa grupy G

2. $M \subseteq H$

Důkaz.

1. Existence. Nechť H_i, $i \in I$, je systém všech podgrup grupy G, které jsou nadmnožinou množiny M. Je $I \neq \emptyset$, protože G je podgrupa grupy G a $M \subseteq G$. Položme $H = \bigcap_{i \in I} H_i$. Ukážeme, že H je podgrupa grupy G generovaná množinou M. Je třeba prověřit:

(i) H je podgrupa grupy G

(ii) $M \subseteq H$

(iii) Jestliže $M \subseteq K$, K je podgrupa grupy G, pak $H \subseteq K$.

KAPITOLA 1. ZÁKLADNÍ POJMY TEORIE GRUP

ad (i): Viz 1.4.7.
ad (ii): Pro každé $i \in I$ máme $M \subseteq H_i$, což dává $M \subseteq \bigcap_{i \in I} H_i = H$.
ad (iii): Nechť $M \subseteq K$, K je podgrupa grupy G. Pak existuje $i_0 \in I$, $K = H_{i_0}$. Z toho plyne, že $H = \bigcap_{i \in I} H_i \subseteq H_{i_0} = K$.

2. Jednoznačnost. Buďte $H_1, H_2 \subseteq G$, H_1 a H_2 jsou podgrupy grupy G generované množinou M. Chceme: $H_1 = H_2$. Víme, že H_2 je podgrupa G, $M \subseteq H_2$ (použili jsme 1. a 2. z definice 1.4.11.). Dále víme, že H_1 splňuje 3. z definice 1.4.11., což dává $H_1 \subseteq H_2$. Výměnou role mezi H_1 a H_2 dostaneme, že $H_2 \subseteq H_1$. Celkem tedy $H_1 = H_2$.

Tvррrнví 1.4.12 umožní zavést označení pro podgrupu generovanou množinou M. Tuto podgrupu budeme značit $\langle M \rangle$. Množinu M nazýváme množinou generátorů grupy $\langle M \rangle$. Pokud $M = \{a_1, a_2, \ldots, a_n\}$, pak hovoříme o podgrupě generované prvky a_1, a_2, \ldots, a_n a označujeme ji často stručně $\langle a_1, a_2, \ldots, a_n \rangle$.

Důkaz. Nejdříve dokážeme pomocné tvrzení: Jestliže $b \in H$, k je kladné celé číslo, pak $b^k \in H$. Postupujeme indukcí vzhledem ke k.

$k = 1$: $b^k = b = b \in H$

$k \geq 1$: Indukční předpoklad: $b^k \in H$. Chceme: $b^{k+1} \in H$. Počítejme: $b^{k+1} = b^k \cdot b = b \in H$ (protože H je podgrupa a $b^k, b \in H$).

Nyní již dokážeme, že $a^n \in H$. Rozlišíme tři případy:

(І) $n > 0$
(ІІ) $n = 0$
(ІІІ) $n < 0$

ad (І): Aplikujeme pomocné tvrzení na $b = a$, $k = n$.
ad (ІІ): $a^n = a^0 = 1 \in H$ (protože H je podgrupa)
ad (ІІІ): $a^n = (a^{-1})^{-n} \in H$ (Jelikož H je podgrupa, je $a^{-1} \in H$. Pak aplikujeme pomocné tvrzení na $b = a^{-1}$, $k = -n$.)

1.4.14. Věta. Nechť G je grupa, $a \in G$. Pak $\langle a \rangle = \{a^n | n \in \mathbb{Z}\}$.

Důkaz. Označme $H = \{a^n | n \in \mathbb{Z}\}$. Je třeba ukázat následující:

(I) H je podgrupa grupy G
1.4. PODGRUPY

(II) $a \in H$

(III) Jestliže K je podgrupa grupy G, $a \in K$, pak $H \subseteq K$.

ad (I): Je třeba prověřit tři věci:

(a) $1 \in H$
(b) Jestliže $x \in H$, pak $x^{-1} \in H$.
(c) Jestliže $x,y \in H$, pak $x \cdot y \in H$.

ad (a): $1 = a^0 \in H$ (je $0 \in \mathbb{Z}$)

ad (b): Nechť $x \in H$. Pak $x = a^n$ pro jisté $n \in \mathbb{Z}$. Je $x^{-1} = (a^n)^{-1} = a^{-n} \in H$

ad (c): Nechť $x,y \in H$. Pak $x = a^k$, $y = a^l$ pro jistá $k,l \in \mathbb{Z}$. Je $x \cdot y = a^k \cdot a^l = a^{k+l} \in H$

ad (II): $a = a^1 \in H$ (je $1 \in \mathbb{Z}$)

ad (III): Nechť K je podgrupa grupy G, $a \in K$. Chceme: $H \subseteq K$. Buď $x \in H$. Je $x = a^n$ pro jisté $n \in \mathbb{Z}$. Dle tvrzení 1.4.13 je $a^n \in K$. Tudíž $x \in K$.

Protože x bylo libovolné, máme $H \subseteq K$.

1.4.15. Příklad. V libovolné grupě G je $\langle \emptyset \rangle = \{1\}$.

1.4.16. Příklad. V tomto příkladu bude základní grupou množina \mathbb{Z} s operací sčítání. Pak $\langle 1 \rangle = \mathbb{Z}$, $\langle 2 \rangle = \mathbb{S}$. Vskutku,

$\langle 1 \rangle = \{ n \cdot 1 | n \in \mathbb{Z} \} = \{ n | n \in \mathbb{Z} \} = \mathbb{Z}$,

$\langle 2 \rangle = \{ n \cdot 2 | n \in \mathbb{Z} \} = \mathbb{S}$.

1.4.17. Příklad. V tomto příkladu bude základní grupou množina \mathbb{R}^\times s operací násobení. Nechť P je množina všech prvočísel. Zřejmě $P \subseteq \mathbb{R}^\times$. Ukážeme, že $\langle P \rangle = \mathbb{Q}^+$.

1. $\langle P \rangle \subseteq \mathbb{Q}^+$:

Je $P \subseteq \mathbb{Q}^+$ a \mathbb{Q}^+ je podgrupa grupy \mathbb{R}^\times. Proto $\langle P \rangle \subseteq \mathbb{Q}^+$.

2. $\mathbb{Q}^+ \subseteq \langle P \rangle$:

Nejdříve si uvědomíme, že $\mathbb{N} \subseteq \langle P \rangle$. Zřejmě $1 \in \langle P \rangle$. Buď $a \in \mathbb{N}$, $a \neq 1$. Pak existují $p_1,\ldots,p_k \in P$, $e_1,\ldots,e_k \in \mathbb{N}$, $a = p_1^{e_1} \cdots p_k^{e_k}$. Prvočíslo $p_1 \in P \subseteq \langle P \rangle$. Dle 1.4.13. je $p_1^{e_1} \in \langle P \rangle$. Obdobně pak $p_2^{e_2} \in \langle P \rangle,\ldots,p_k^{e_k} \in \langle P \rangle$. Protože podgrupa $\langle P \rangle$ je uzavřena vzhledem k součinu, máme $a = p_1^{e_1} p_2^{e_2} \cdots p_k^{e_k} \in \langle P \rangle$. Buď nyní $x \in \mathbb{Q}^+$. Existují $a,b \in \mathbb{N}$, $x = \frac{a}{b}$. Víme již, že $a,b \in \langle P \rangle$. Pak $\frac{1}{b} \in \langle P \rangle, x = a \cdot \frac{1}{b} \in \langle P \rangle$. Jelikož prvek $x \in \mathbb{Q}^+$ byl libovolný, dostali jsme výsledek $\mathbb{Q}^+ \subseteq \langle P \rangle$.
1.4.18. Tvrzení. Nechť G je grupa, $a \in G$, a má řád $n \in \mathbb{N}$. Pak $\langle a \rangle$ má řád n a $\langle a \rangle = \{1, a, a^2, \ldots, a^{n-1}\}$.

Důkaz. Dle 1.4.14. je $\langle a \rangle = \{a^k \mid k \in \mathbb{Z}\}$. Chceme tedy ukázat, že $\{a^k \mid k \in \mathbb{Z}\} = \{1, a, a^2, \ldots, a^{n-1}\}$.

$\{1, a, a^2, \ldots, a^{n-1}\} \subseteq \{a^k \mid k \in \mathbb{Z}\}$: To je zřejmé.

$\{a^k \mid k \in \mathbb{Z}\} \subseteq \{1, a, a^2, \ldots, a^{n-1}\}$: Buď $k \in \mathbb{Z}$. Číslo k vydělíme se zbytkem číslem n. Existují $q, r \in \mathbb{Z}$, $k = q \cdot n + r$, $0 \leq r < n$. Pak $a^k = a^{qn+r} = a^{qn} \cdot a^r = (a^n)^q \cdot a^r = 1^q \cdot a^r = 1 \cdot a^r = a^r$. Jelikož $0 \leq r < n$, je $a^k \in \{1, a, a^2, \ldots, a^{n-1}\}$.

Zbývá ukázat, že prvky $1, a, a^2, \ldots, a^{n-1}$ jsou navzájem různé. Předpokládejme opak, tj. $a^i = a^j$ pro nějaká $i, j \in \{0, 1, \ldots, n-1\}$, $i < j$. Pak $1 = a^{j-i}$, kde $j - i \in \mathbb{N}$ a přitom $j - i \leq (n-1) - 0 = n - 1 < n$. Dostali jsme spor s faktem, že číslo n je řád prvku a.

Zavedeme teď pojem, který bude hrát zásadní roli v kapitole o faktorových grupách.

1.4.19. Definice. Podgrupa H grupy G se nazývá normální, jestliže

$$g \cdot h \cdot g^{-1} \in H$$

pro libovolné prvky $g \in G$, $h \in H$.

Pro komutativní grupy pojem normální podgrupy nepřináší nic nového. V komutativní grupě je každá podgrupa normální, poněvadž $g \cdot h \cdot g^{-1} = g \cdot g^{-1} \cdot h = 1 \cdot h = h$.

Nechť G je grupa, $A \subseteq G$, $B \subseteq G$. Je přirozené, že klademe

$$A \cdot B = AB = \{x \cdot y \mid x \in A, y \in B\}.$$

Důkaz. Je třeba prověřit následující:

(I) $1 \in HK$
(II) Jestliže $x \in HK$, pak $x^{-1} \in HK$.
(III) Jestliže $x, y \in HK$, pak $x \cdot y \in HK$.
(IV) Jestliže $z \in G$, $x \in HK$, pak $zxz^{-1} \in HK$.

1.5. **SOUČINY GRUP**

ad (I): $1 = 1 \cdot 1 \in HK$ (uvědomme si, že $1 \in H$, $1 \in K$, protože H, K jsou podgrupy)

ad (II): Nechť $x \in HK$. Existují $a \in H$, $b \in K$, $x = ab$. Pak $x^{-1} = b^{-1}a^{-1} = 1 \cdot b^{-1} \cdot a^{-1} = a^{-1}ab^{-1}a^{-1} = a^{-1} \cdot (ab^{-1}a^{-1})$. Jelikož H je podgrupa a $a \in H$, je $a^{-1} \in H$. Jelikož K je podgrupa a $b \in K$, je $b^{-1} \in K$. Ovšem podgrupa K je normální, což dává $ab^{-1}a^{-1} \in K$. Celkem: $a^{-1} \in H$, $ab^{-1}a^{-1} \in K$, tedy $x^{-1} \in HK$.

ad (III): Nechť $x, y \in HK$. Existují $a, c \in H$, $b, d \in K$, $x = ab$, $y = cd$. Pak $xy = abcd = abc \cdot 1 \cdot d = abcb^{-1}bd = (a(bc^{-1}))(bd)$. Jelikož $c \in H$ a H je normální podgrupa, je $bc^{-1} \in H$. Protože H je podgrupa, je $a(bc^{-1}) \in H$. Protože K je podgrupa, je $bd \in K$. Celkem: $a(bc^{-1}) \in H$, $bd \in K$, tedy $xy \in HK$.

ad (IV): Nechť $z \in G$, $x \in HK$. Existují $a \in H$, $b \in K$, $x = ab$. Pak $zxz^{-1} = zabz^{-1} = za \cdot 1 \cdot b \cdot z^{-1} = zaz^{-1}zbz^{-1} = (zaz^{-1})(zbz^{-1})$. Jelikož podgrupa H je normální, je $zaz^{-1} \in H$. Jelikož podgrupa K je normální, je $zbz^{-1} \in K$. Pak tedy $zxz^{-1} \in HK$.

1.4.21. **Tvrzení.** Nechť G je grupa, H, K jsou normální podgrupy grupy G. Pak

$$\langle H \cup K \rangle = HK.$$

Důkaz. Je třeba prověřit následující:

(I) HK je podgrupa grupy G

(II) $H \subseteq HK$, $K \subseteq HK$

(III) Jestliže Q je podgrupa grupy G, $H \cup K \subseteq Q$, pak $HK \subseteq Q$.

ad (I): Viz 1.4.20.

ad (II): Nechť $x \in H$. Je $x = x \cdot 1 \in HK$, protože $1 \in K$. Tudíž $H \subseteq HK$.

Nechť $y \in K$. Je $y = 1 \cdot y \in HK$, protože $1 \in H$. Tudíž $K \subseteq HK$.

ad (III): Nechť Q je podgrupa grupy G, $H \cup K \subseteq Q$. Buď $x \in HK$. Chceme: $x \in Q$. Existují $a \in H$, $b \in K$, $x = ab$. Protože $H \cup K \subseteq Q$, je $a \in Q$, $b \in Q$. Protože Q je podgrupa, je $x = ab \in Q$.

1.5 **Součiny grup**

V této kapitole se naučíme jednu základní konstrukci, jak ze dvou daných grup vytvořit grupu další (velmi jednoduchým a přirozeným způsobem).
1.5.1. Tvrzení. Nechť jsou dány grupy G_1, G_2. Na kartézském součinu $G_1 \times G_2$ definujeme operaci násobení následovně:

$$(a,b) \cdot (c,d) = (ac,bd)$$

pro libovolná $(a,b), (c,d) \in G_1 \times G_2$. Potom $G_1 \times G_2$ je grupa.

Důkaz. Musíme dokázat:

(I) operace je asociativní

(II) operace má neutrální prvek

(III) ke každému prvku existuje prvek inverzní

ad (I): Nechť $(a,b), (c,d), (e,f) \in G_1 \times G_2$. Počítejme:

$$(a,b) \cdot ((c,d) \cdot (e,f)) = (a,b) \cdot (ce,df) = (a(ce),b(df)) = ((ac)e,(bd)f) = (ac, bd) \cdot (c,d) \cdot (e,f).$$

(ad (II): Neutrálním prvkem je dvojice $(1,1)$. Prověříme to. Buď $(a,b) \in G_1 \times G_2$. Pak $(1,1) \cdot (a,b) = (1 \cdot a, 1 \cdot b) = (a,b), (a,b) \cdot (1,1) = (a \cdot 1, b \cdot 1) = (a,b)$. ad (III): Buď $(a,b) \in G_1 \times G_2$. Počítejme:

$$(a,b) \cdot (a^{-1}, b^{-1}) = (aa^{-1}, bb^{-1}) = (1,1), (a^{-1}, b^{-1}) \cdot (a,b) = (a^{-1}a, b^{-1}b) = (1,1).$$

Tudíž $(a,b)^{-1} = (a^{-1},b^{-1})$.

1.5.2. Definice. Grupa $G_1 \times G_2$ sestrojená v 1.5.1. se nazývá součin grup G_1 a G_2.

1.5.3. Příklad. Pro libovolnou grupu G platí $G \cong G \times \{1\}$.

1.5.4. Příklad. Nechť $G = \{1,-1\} \subseteq \mathbb{Q}^{\times}$. Snadno se lze přesvědčit, že G je podgrupa grupy \mathbb{Q}^{\times} (operací je násobení čísel). Sestrojíme multiplikativní tabulku grupy $G \times G$:

<table>
<thead>
<tr>
<th></th>
<th>$(1,1)$</th>
<th>$(1,-1)$</th>
<th>$(-1,1)$</th>
<th>$(-1,-1)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$(1,1)$</td>
<td>$(1,1)$</td>
<td>$(1,-1)$</td>
<td>$(-1,1)$</td>
<td>$(-1,-1)$</td>
</tr>
<tr>
<td>$(1,-1)$</td>
<td>$(1,-1)$</td>
<td>$(1,1)$</td>
<td>$(-1,-1)$</td>
<td>$(-1,1)$</td>
</tr>
<tr>
<td>$(-1,1)$</td>
<td>$(-1,1)$</td>
<td>$(-1,-1)$</td>
<td>$(1,1)$</td>
<td>$(1,-1)$</td>
</tr>
<tr>
<td>$(-1,-1)$</td>
<td>$(-1,-1)$</td>
<td>$(1,1)$</td>
<td>$(1,-1)$</td>
<td>$(1,1)$</td>
</tr>
</tbody>
</table>

Následující tvrzení ukazuje, že součin grup je v podstatě asociativní. Při zápisu součinu více grup tudíž nemusíme psát závorky.
1.5. SOUČINY GRUP

1.5.5. Tvrzení. Nechť G_1, G_2, G_3 jsou grupy. Pak

$$G_1 \times (G_2 \times G_3) \cong (G_1 \times G_2) \times G_3.$$

Důkaz. Definujme zobrazení $\varphi : G_1 \times (G_2 \times G_3) \to (G_1 \times G_2) \times G_3$ takto:

$$\varphi((x, (y, z))) = ((x, y), z)$$

pro $(x, (y, z)) \in G_1 \times (G_2 \times G_3)$.

φ je injekce:
Nechť $(x, (y, z)), (u, (v, w)) \in G_1 \times (G_2 \times G_3), \varphi((x, (y, z))) = \varphi((u, (v, w)))$.
Chceme: $(x, (y, z)) = (u, (v, w))$.
Víme, že $((x, y), z) = ((u, v), w)$. Pak $(x, y) = (u, v), z = w$ a tedy $x = u, y = v, z = w$. Z toho plyne, že $x = u, (y, z) = (v, w)$ a tedy $(x, (y, z)) = (u, (v, w))$.

φ je surjekce:
Nechť $((u, v), w) \in (G_1 \times G_2) \times G_3$. Hledáme $(x, (y, z)) \in G_1 \times (G_2 \times G_3)$ tak, aby $\varphi((x, (y, z))) = ((u, v), w)$. Zvolíme $x = u, y = v, z = w$.

φ je homomorfismus:
Nechť $(x, (y, z)), (u, (v, w)) \in G_1 \times (G_2 \times G_3)$. Pak

$$\varphi((x, (y, z)) \cdot (u, (v, w))) = \varphi((x \cdot u, (y \cdot v), z \cdot w))$$
$$= \varphi((x, y) \cdot (u, v), z \cdot w)$$
$$= ((x, y), z) \cdot ((u, v), w)$$
$$= \varphi((x, (y, z))) \cdot \varphi((u, (v, w))).$$

Následující tvrzení ukazuje, že součin grup je v podstatě komutativní. Při zápisu součinu více grup tudíž nemusíme psát závorky (viz 1.5.5.) a nezáleží na pořadí.

1.5.6. Tvrzení. Nechť G_1, G_2 jsou grupy. Pak

$$G_1 \times G_2 \cong G_2 \times G_1.$$
KAPITOLA 1. ZÁKLADNÍ POJMY TEORIE GRUP

DŮKAZ. Definujme zobrazení \(\varphi : G_1 \times G_2 \to G_2 \times G_1 \) takto:
\[
\varphi((x,y)) = (y,x)
\]
pro \((x,y) \in G_1 \times G_2\).
Čtenář se sám přesvědčí, že \(\varphi \) je bijekce.

\(\varphi \) je homomorfismus:
Nechť \((x,y),(u,v) \in G_1 \times G_2\). Pak
\[
\varphi((x,y) \cdot (u,v)) = \varphi((x \cdot u, y \cdot v))
= (y \cdot v, x \cdot u)
= (y,x) \cdot (v,u)
= \varphi((x,y)) \cdot \varphi((u,v)).
\]

Umíme zatím dvě grupy vynásobit. Můžeme grupu rozložit na součin?

1.5.7. Věta. Nechť \(G \) je grupa, \(H, K \) jsou normální podgrupy grupy \(G \). Jestliže \(HK = G \) a \(H \cap K = \{1\} \), pak \(G \cong H \times K \).

DŮKAZ. Budeme definovat zobrazení \(\varphi : H \times K \to G \). Pro \((x,y) \in H \times K\) položíme \(\varphi((x,y)) = x \cdot y \). V dalším ukážeme, že \(\varphi \) je izomorfismus.

(I) \(\varphi \) je injekce:
Nechť \((x,y),(u,v) \in H \times K\), \(\varphi((x,y)) = \varphi((u,v)) \). Chceme: \((x,y) = (u,v)\).
Víme, že \(x \cdot y = u \cdot v \). Pak \(x = uv^{-1}, u^{-1}x = vy^{-1} \). Jelikož \(u \in H \) a \(H \) je podgrupa, je \(u^{-1} \in H \). Ovšem také \(x \in H \), takže \(u^{-1}x \in H \) (opět jsme použili fakt, že \(H \) je podgrupa). Obdobně \(vy^{-1} \in K \). Pak \(u^{-1}x = vy^{-1} \in H \cap K \).
Protože \(H \cap K = \{1\} \), máme \(u^{-1}x = 1, vy^{-1} = 1 \), a tedy \(x = u, v = y, (x,y) = (u,v)\).

(II): \(\varphi \) je surjekce:
Buď \(g \in G \). Hledáme \((x,y) \in H \times K\) takové, že \(\varphi((x,y)) = g \). Jelikož \(G = HK \), je \(g \in HK \), \(g = xy \) pro nějaká \(x \in H, y \in K \). Pak \((x,y) \in H \times K\) a \(\varphi((x,y)) = xy = g \).

(III): \(\varphi \) je homomorfismus:
Nechť \((x,y),(u,v) \in H \times K\). Chceme: \(\varphi((x,y) \cdot (u,v)) = \varphi((x,y)) \cdot \varphi((u,v)) \).
Je

\[
\varphi((x,y) \cdot (u,v)) = \varphi((x \cdot u, y \cdot v))
= (y \cdot v, x \cdot u)
= (y,x) \cdot (v,u)
= \varphi((x,y)) \cdot \varphi((u,v)).
\]
\[\varphi((x, y) \cdot (u, v)) = \varphi((xu, yv)) = xuyv, \]
\[\varphi((x, y)) \cdot \varphi((u, v)) = xy \cdot uv. \]
Chceme tedy dokázat, že \(xuyv = xyu. \)
Uvažme prvek \(uyu^{-1}y^{-1}. \)
Protože \(u \in H, \) je \(u^{-1} \in H. \) Protože podgrupa \(H \) je normální, je \(yu^{-1}y^{-1} \in H. \) Již víme: \(u \in H, yu^{-1}y^{-1} \in H. \) Pak \(uyu^{-1}y^{-1} \in H. \)
Protože \(y \in K \) a podgrupa \(K \) je normální, je \(uyu^{-1} \in K. \) Protože \(y \in K, \) je \(y^{-1} \in K. \) Již víme: \(uyu^{-1} \in K, y^{-1} \in K. \) Pak \(uyu^{-1}y^{-1} \in K. \)
Právě jsme zjistili, že \(uyu^{-1}y^{-1} \in H \cap K. \) Ovšem \(H \cap K = \{1\}, \) takže \(uyu^{-1}y^{-1} = 1, uyu^{-1} = y, uy = yu, xuyv = xyuv. \)

1.5.8. Příklad. Nechť \(G = \{x \in \mathbb{C}|x^6 = 1\}. \) Pak \(G \) je podgrupa grupy \(\mathbb{C}^* \).
Abychom se o tom přesvědčili, prověříme tři záležitosti:
(I) \(1 \in G \)
(II) Jelikož \(x \in G, \) pak \(x^{-1} \in G. \)
(III) Jelikož \(x, y \in G, \) pak \(x \cdot y \in G. \)
ad (I): \(1^6 = 1, \) takže \(1 \in G \)
ad (II): Nechť \(x \in G. \) Pak \(x^6 = 1 \) a tedy \((x^{-1})^6 = (x^6)^{-1} = 1^{-1} = 1. \) To dává \(x^{-1} \in G. \)
ad (III): Nechť \(x, y \in G. \) Pak \(x^6 = 1, y^6 = 1 \) a tedy \((x \cdot y)^6 = x^6 \cdot y^6 = 1 \cdot 1 = 1. \)
To dává \(x \cdot y \in G. \)
Prvky grupy \(G \) zjistíme vyřešením rovnice \(x^6 = 1 \) v oboru komplexních čísel.
Víme, že tato rovnice má 6 řešení:
\[
\begin{align*}
 x_0 &= \cos 0 \cdot \frac{2\pi}{6} + i \sin 0 \cdot \frac{2\pi}{6} = (\cos \frac{2\pi}{6} + i \sin \frac{2\pi}{6})^0 \\
 x_1 &= \cos 1 \cdot \frac{2\pi}{6} + i \sin 1 \cdot \frac{2\pi}{6} = (\cos \frac{2\pi}{6} + i \sin \frac{2\pi}{6})^1 \\
 x_2 &= \cos 2 \cdot \frac{2\pi}{6} + i \sin 2 \cdot \frac{2\pi}{6} = (\cos \frac{2\pi}{6} + i \sin \frac{2\pi}{6})^2 \\
 x_3 &= \cos 3 \cdot \frac{2\pi}{6} + i \sin 3 \cdot \frac{2\pi}{6} = (\cos \frac{2\pi}{6} + i \sin \frac{2\pi}{6})^3 \\
 x_4 &= \cos 4 \cdot \frac{2\pi}{6} + i \sin 4 \cdot \frac{2\pi}{6} = (\cos \frac{2\pi}{6} + i \sin \frac{2\pi}{6})^4 \\
 x_5 &= \cos 5 \cdot \frac{2\pi}{6} + i \sin 5 \cdot \frac{2\pi}{6} = (\cos \frac{2\pi}{6} + i \sin \frac{2\pi}{6})^5.
\end{align*}
\]
Položme \(\varepsilon = \cos \frac{2\pi}{6} + i \sin \frac{2\pi}{6} = \cos \frac{\pi}{3} + i \sin \frac{\pi}{3}. \) Pak
\[G = \{\varepsilon^0, \varepsilon^1, \varepsilon^2, \varepsilon^3, \varepsilon^4, \varepsilon^5\}. \]
KAPITOLA 1. ZÁKLADNÍ POJMY TEORIE GRUP

Sestrojíme multiplikativní tabulku grupy G.

<table>
<thead>
<tr>
<th>ε^0</th>
<th>ε^1</th>
<th>ε^2</th>
<th>ε^3</th>
<th>ε^4</th>
<th>ε^5</th>
</tr>
</thead>
<tbody>
<tr>
<td>ε^0</td>
<td>ε^1</td>
<td>ε^2</td>
<td>ε^3</td>
<td>ε^4</td>
<td>ε^5</td>
</tr>
<tr>
<td>ε^1</td>
<td>ε^2</td>
<td>ε^3</td>
<td>ε^4</td>
<td>ε^5</td>
<td>ε^0</td>
</tr>
<tr>
<td>ε^2</td>
<td>ε^3</td>
<td>ε^4</td>
<td>ε^5</td>
<td>ε^0</td>
<td>ε^1</td>
</tr>
<tr>
<td>ε^3</td>
<td>ε^4</td>
<td>ε^5</td>
<td>ε^0</td>
<td>ε^1</td>
<td>ε^2</td>
</tr>
<tr>
<td>ε^4</td>
<td>ε^5</td>
<td>ε^0</td>
<td>ε^1</td>
<td>ε^2</td>
<td>ε^3</td>
</tr>
<tr>
<td>ε^5</td>
<td>ε^0</td>
<td>ε^1</td>
<td>ε^2</td>
<td>ε^3</td>
<td>ε^4</td>
</tr>
</tbody>
</table>

Uvedeme ukázku, jak jsme provedli méně zřejmé výpočty:

$\varepsilon^4 \cdot \varepsilon^5 = \varepsilon^9 = \varepsilon^6 \cdot \varepsilon^3 = 1 \cdot \varepsilon^3 = \varepsilon^3$.

Při těchto výpočtech jsme vždy využívali fakt, že $\varepsilon^0 = 1$.

Položme nyní $H = \{\varepsilon^0, \varepsilon^3\}$, $K = \{\varepsilon^0, \varepsilon^2, \varepsilon^4\}$. Snadno se lze přesvědčit, že H a K jsou (normální) podgrupy grupy G. Zřejmě $H \cap K = \{\varepsilon^0\} = \{1\}$.

Dále si všimněme, že $HK = G$. Inkluze $HK \subseteq G$ je jasná. Přesvědčíme se, že $G \subseteq HK$:

$\varepsilon^0 = \varepsilon^0 \cdot \varepsilon^0 \in HK$
$\varepsilon^1 = \varepsilon^3 \cdot \varepsilon^4 \in HK$
$\varepsilon^2 = \varepsilon^0 \cdot \varepsilon^2 \in HK$
$\varepsilon^3 = \varepsilon^3 \cdot \varepsilon^0 \in HK$
$\varepsilon^4 = \varepsilon^0 \cdot \varepsilon^4 \in HK$
$\varepsilon^5 = \varepsilon^3 \cdot \varepsilon^2 \in HK$.

Podle věty 1.5.7. je $G \cong H \times K$.

V důkazu věty 1.5.7. je ukázáno, jak lze najít izomorfismus $\varphi : H \times K \to G$.

Postupuje se takto:

$\varphi((\varepsilon^0, \varepsilon^0)) = \varepsilon^0 \cdot \varepsilon^0 = \varepsilon^0$
$\varphi((\varepsilon^0, \varepsilon^2)) = \varepsilon^0 \cdot \varepsilon^2 = \varepsilon^2$
$\varphi((\varepsilon^0, \varepsilon^4)) = \varepsilon^0 \cdot \varepsilon^4 = \varepsilon^4$
$\varphi((\varepsilon^3, \varepsilon^0)) = \varepsilon^3 \cdot \varepsilon^0 = \varepsilon^3$
$\varphi((\varepsilon^3, \varepsilon^2)) = \varepsilon^3 \cdot \varepsilon^2 = \varepsilon^5$
$\varphi((\varepsilon^3, \varepsilon^4)) = \varepsilon^3 \cdot \varepsilon^4 = \varepsilon^1$.
Sestrojíme nyní multiplikativní tabulku grupy $H \times K$:

<table>
<thead>
<tr>
<th>$(\varepsilon^0, \varepsilon^0)$</th>
<th>$(\varepsilon^0, \varepsilon^3)$</th>
<th>$(\varepsilon^0, \varepsilon^4)$</th>
<th>$(\varepsilon^3, \varepsilon^0)$</th>
<th>$(\varepsilon^0, \varepsilon^0)$</th>
<th>$(\varepsilon^0, \varepsilon^2)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$(\varepsilon^0, \varepsilon^0)$</td>
<td>$(\varepsilon^0, \varepsilon^3)$</td>
<td>$(\varepsilon^0, \varepsilon^4)$</td>
<td>$(\varepsilon^3, \varepsilon^0)$</td>
<td>$(\varepsilon^0, \varepsilon^0)$</td>
<td>$(\varepsilon^0, \varepsilon^2)$</td>
</tr>
<tr>
<td>$(\varepsilon^3, \varepsilon^4)$</td>
<td>$(\varepsilon^0, \varepsilon^3)$</td>
<td>$(\varepsilon^0, \varepsilon^2)$</td>
<td>$(\varepsilon^3, \varepsilon^0)$</td>
<td>$(\varepsilon^0, \varepsilon^0)$</td>
<td>$(\varepsilon^0, \varepsilon^2)$</td>
</tr>
<tr>
<td>$(\varepsilon^0, \varepsilon^2)$</td>
<td>$(\varepsilon^3, \varepsilon^0)$</td>
<td>$(\varepsilon^0, \varepsilon^4)$</td>
<td>$(\varepsilon^3, \varepsilon^0)$</td>
<td>$(\varepsilon^0, \varepsilon^0)$</td>
<td>$(\varepsilon^0, \varepsilon^2)$</td>
</tr>
<tr>
<td>$(\varepsilon^0, \varepsilon^0)$</td>
<td>$(\varepsilon^3, \varepsilon^0)$</td>
<td>$(\varepsilon^0, \varepsilon^4)$</td>
<td>$(\varepsilon^3, \varepsilon^0)$</td>
<td>$(\varepsilon^0, \varepsilon^0)$</td>
<td>$(\varepsilon^0, \varepsilon^2)$</td>
</tr>
<tr>
<td>$(\varepsilon^0, \varepsilon^4)$</td>
<td>$(\varepsilon^0, \varepsilon^3)$</td>
<td>$(\varepsilon^0, \varepsilon^2)$</td>
<td>$(\varepsilon^3, \varepsilon^0)$</td>
<td>$(\varepsilon^0, \varepsilon^0)$</td>
<td>$(\varepsilon^0, \varepsilon^2)$</td>
</tr>
</tbody>
</table>

Vyřešíme ještě otázku, za jakých podmínek je součin dvou grup komutativní.

1.5.9. Tvrzení. Nechť G_1, G_2 jsou grupy. Grupa $G_1 \times G_2$ je komutativní právě tehdy, když obě grupy G_1, G_2 jsou komutativní.

Důkaz. Předpokládejme nejdříve, že grupa $G_1 \times G_2$ je komutativní. Buď $a, b \in G_1$. Pak $(a, 1), (b, 1) \in G_1 \times G_2$, $(a, 1) \cdot (b, 1) = (a \cdot b, 1) = (a, b, 1)$, $(b, 1) \cdot (a, 1) = (b \cdot a, 1) = (b, a, 1)$. Protože grupa $G_1 \times G_2$ je komutativní, je $(a, 1) \cdot (b, 1) = (b, 1) \cdot (a, 1)$, čili $(a \cdot b, 1) = (b \cdot a, 1)$. Z toho vyplývá, že $a \cdot b = b \cdot a$. Prvky a, b byly libovolné, takže grupa G_1 je komutativní. Obdobně se dokáže, že grupa G_2 je komutativní. Předpokládejme nyní naopak, že grupy G_1, G_2 jsou komutativní. Nechť $(x, y), (u, v) \in G_1 \times G_2$. Pak $(x, y) \cdot (u, v) = (x \cdot u, y \cdot v) = (u \cdot x, v \cdot y) = (u, v) \cdot (x, y)$ a grupa $G_1 \times G_2$ je komutativní.
KAPITOLA 1. ZÁKLADNÍ POJMY TEORIE GRUP
Kapitola 2

Příklady grup

2.1 Aditivní grupa okruhu

Připomeňme nejdříve tři definice.

2.1.1. Definice. Okruh je množina spolu se dvěma binárními operacemi, většinou zvanými sčítání a násobení, přičemž vzhledem ke sčítání se jedná o komutativní grupu a násobení je distributivní vzhledem ke sčítání. Okruh se nazývá asociaativní (komutativní, s jednotkovým prvkem), pokud operace násobení je asociaativní (komutativní, má neutrální prvek).

2.1.2. Definice. Obor integrity je asociativní a komutativní okruh, v němž pro každé dva prvky x, y platí:

Jestliže $x \cdot y = 0$, pak $x = 0$ nebo $y = 0$.

2.1.3. Definice. Těleso je aspoň dvouprvkový asociativní okruh s jednotkovým prvkem (označme jej 1), v němž pro každý nenulový prvek x existuje prvek y takový, že $x \cdot y = y \cdot x = 1$. Prvek y se značí x^{-1} nebo $\frac{1}{x}$. Značení je možno zavést, neboť prvek y je určen jednoznačně (nechť $x \cdot z = z \cdot x = 1$; pak $y = y \cdot 1 = y \cdot (x \cdot z) = (y \cdot x) \cdot z = 1 \cdot z = z$). Je-li v tělese násobení komutativní, pak hovoříme o komutativním tělese. Protože v tomto textu budeme pracovat výhradně s komutativními tělesy, budeme pro stručnost místo názvu komutativní těleso používat pouze slovo těleso.

Číselné množiny \mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C} spolu s operacemi sčítání a násobení jsou okruhy. Speciálně, \mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C} spolu s operací sčítání jsou komutativní grupy.
Nechť \(\sim \) je ekvivalence na neprázdné množině \(A \). Položme pro libovolné \(a, \alpha \in A \), \(\alpha = \{ x \in A \mid x \sim a \} \).

Nyní zopakujeme definici kongruence modulo \(m \).

2.1.4. Definice. Nechť \(a, b, m \) jsou celá čísla, \(m > 0 \). Říkáme, že \(a \) je kongruentní s \(b \) modulo \(m \), pokud \(m \) dělí \(b - a \). Tento vztah zapisujeme \(a \equiv b \ (m) \). Bude-li z kontextu jasné, o jaké \(m \) se jedná, můžeme psát pouze \(a \equiv b \).

2.1.5. Tvrzení. \(\equiv \) je relace ekvivalence na množině \(\mathbb{Z} \).

Důkaz. Například [3], 1.2.17.

Faktorovou množinu \(\mathbb{Z}/ \equiv \) budeme značit \(\mathbb{Z}_m \).

2.1.6. Tvrzení. Množina \(\mathbb{Z}_m \) má přesně \(m \) prvků, totiž \(0, 1, \ldots, m - 1 \).

Důkaz. Například [3], 1.2.18.

2.1.7. Tvrzení. Nechť \(a, b, c, d \in \mathbb{Z} \). Jestliže \(a \equiv c \), \(b \equiv d \), pak \(a + b \equiv c + d \), \(a \cdot b \equiv c \cdot d \).

Důkaz. Například [3], 1.2.19.

2.1.8. Tvrzení. Nechť na \(\mathbb{Z}_m \) definujeme sčítání a násobení takto: \(\bar{a} + \bar{b} = a + b \), \(\bar{a} \cdot \bar{b} = a \cdot b \ (a, b \in \mathbb{Z}) \). Pak \(\mathbb{Z}_m \) je komutativní asociativní okruh s jednotkovým prvkem \(\bar{1} \).

Důkaz. Například [3], 1.2.20.

2.1.9. Tvrzení. Nechť \(m \) je celé číslo, \(m > 1 \). Platí: \(\mathbb{Z}_m \) je těleso právě tehdy, když \(m \) je prvočíslo.

Důkaz. Například [3], 1.2.21.

Vidíme, že máme k dispozici nekonečně mnoho příkladů komutativních grup \(\mathbb{Z}_m \) (uvážujeme operaci sčítání). Pro ilustraci uvedeme tabulku operace sčítání v grupě \(\mathbb{Z}_5 \).
2.2. GRUPA JEDNOTEK OKRUHU

Jestliže R je asociativní okruh s jednotkovým prvkem 1, pak prvek x je jednotka okruhu R, pokud existuje $y \in R$ s vlastností $x \cdot y = 1$, $y \cdot x = 1$. Množinu všech jednotek okruhu R označíme $U(R)$.

2.2.1. Tvrzení. Nechť R je asociativní okruh s jednotkovým prvkem. Platí: $U(R)$ spolu s operací násobení je grupa.

Důkaz. Ukážeme nejdříve, že množina $U(R)$ je uzavřená vzhledem k operaci násobení. Nechť $x,u \in U(R)$. Chceme: $x \cdot u \in U(R)$. Existují $y,v \in R$ tak, že $x \cdot y = 1$, $y \cdot x = 1$, $u \cdot v = 1$, $v \cdot u = 1$. Počítejme:

$$(x \cdot u) \cdot (v \cdot y) = x \cdot (u \cdot v) \cdot y = x \cdot 1 \cdot y = x \cdot y = 1,$$

$$(v \cdot y) \cdot (x \cdot u) = v \cdot (y \cdot x) \cdot u = v \cdot 1 \cdot u = v \cdot u = 1.$$

Spočítali jsme, že $x \cdot u \in U(R)$.

Nyní víme, že násobení je operace na množině $U(R)$. Tato operace je asociativní, jelikož okruh R je asociativní.

Tato operace má neutrální prvek, jelikož $1 \cdot 1 = 1$ a tedy $1 \in U(R)$.

Nechť $x \in U(R)$. Pak existuje $y \in R$, $x \cdot y = 1$, $y \cdot x = 1$. Zřejmě $y \in U(R)$. Celkem: $U(R)$ spolu s operací násobení je grupa.

Pro těleso T označme T^\times množinu všech nenulových prvků tělesa T.

2.2.2. Tvrzení. Nechť T je těleso. Pak $U(T) = T^\times$. Speciálně, T^\times spolu s operací násobení je komutativní grupa.

Důkaz. Nechť $x \in U(T)$. Chceme: $x \in T^\times$. Předpokládejme opak, tj. $x = 0$. Jelikož x je jednotka tělesa T, existuje $y \in T$, $x \cdot y = 1$. Ovšem $x = 0$, takže $0 \cdot y = 1$, $0 = 1$. Pak pro libovolné $a \in T$ máme $0 \cdot a = 1 \cdot a$, $0 = a$. Tudíž těleso T má pouze jeden prvek , spor. Nutně tedy $x \neq 0$, $x \in T^\times$.

Naopak, nechť $x \in T^\times$. Chceme: $x \in U(T)$. Dle definice tělesa existuje $y \in T$,
KAPITOLA 2. PŘÍKLADY GRUP

x \cdot y = 1, y \cdot x = 1. Pak x \in U(T).
Zbytek tvrzení plyne z 2.2.1. a z faktu, že násobení v tělese je komutativní.

Vzhledem k výše uvedenému dostáváme příklady komutativních grup
U(\mathbb{Z}), \mathbb{Q}^\times, \mathbb{R}^\times, \mathbb{C}^\times, U(\mathbb{Z}_m), \mathbb{Z}_p^\times (p je prvočíslo). Grupy \mathbb{Q}^\times, \mathbb{R}^\times, \mathbb{C}^\times jsou nekonečné. Grupa U(\mathbb{Z}) má dva prvky, čísla 1, −1. Zde je tabulka násobení v grupě U(\mathbb{Z}):

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>−1</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>−1</td>
</tr>
<tr>
<td>−1</td>
<td>−1</td>
<td>1</td>
</tr>
</tbody>
</table>

Grupa \mathbb{Z}_p^\times má p − 1 prvků. Pro ilustraci uvedeme tabulku násobení v grupě \mathbb{Z}_5^\times.

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>4</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>1</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

Je zřejmé, že grupa U(\mathbb{Z}_m) je konečná. Budeme se nyní zabývat otázkou, jaký je přesný počet prvků grupy U(\mathbb{Z}_m).

Připomeňme si, že pro celá čísla a, b symbol NSD(a, b) značí největší společný dělitel čísel a, b.

2.2.3. Definice. Eulerova funkce \varphi je definována následovně:
Jestliže n je celé číslo, n > 0, pak
\[\varphi(n) = \text{card}\{k \in \mathbb{Z}| 0 \leq k < n, \text{NSD}(k, n) = 1\}. \]

2.2.4. Věta. (Bezoutova rovnost) Pro libovolná celá čísla a, b existují celá čísla u,v taková, že
\[\text{NSD}(a, b) = u \cdot a + v \cdot b. \]

Důkaz. Pokud a = b = 0, je \text{NSD}(a, b) = 0 a stačí vzít u = v = 0.
NECHT a ≠ 0 nebo b ≠ 0. Pro určitost předpokládejme, že a ≠ 0. Buď
\[M = \{x \cdot a + y \cdot b| x, y \in \mathbb{Z}, x \cdot a + y \cdot b > 0\}. \]
2.2. GRUPA JEDNOTEK OKRUHU

Je-li \(a > 0 \), pak \(1 \cdot a + 0 \cdot b \in M \). Je-li \(a < 0 \), pak \(-1 \cdot a + 0 \cdot b \in M \). Teď \(M \neq \emptyset \). Buď \(d = \min M \). Uvědomme si, že \(d = u \cdot a + v \cdot b \) pro jistá \(u, v \in \mathbb{Z} \).

Ukážeme, že \(d = \text{NSD}(a, b) \). Je třeba ukázat dvě věci:

(I) \(d \) dělí \(a \), \(d \) dělí \(b \).

ad (I): Ukážeme, že \(d \) dělí \(a \). Fakt, že \(d \) dělí \(b \), se ukáže obdobně. Číslo \(a \) vydělte se zbytkem číslem \(d \):

\[
 a = d \cdot q + r
\]

\(q, r \in \mathbb{Z} \), \(0 \leq r < d \). Chceme:

\(r = 0 \). Předpokládejme, že \(0 < r \). Platí:

\[
 a = (u \cdot a + v \cdot b) \cdot q + r
 \]

\[
 a - uqa - vqb = r
 \]

\[
(1 - uq) \cdot a + (-vq) \cdot b = r
\]

Jelikož \(1 - uq, -vq \) jsou celá čísla a \(r > 0 \), je \(r \in M \). Ovšem \(r < d, d = \min M \).

Dostali jsme spor. Takže \(0 = r \).

ad (II): Nechť \(e \in \mathbb{Z} \), \(e \) dělí \(a \), \(e \) dělí \(b \). Chceme: \(e \) dělí \(d \). Existují \(r, s \in \mathbb{Z} \), \(a = e \cdot r \), \(b = e \cdot s \). Pak

\[
 d = ua + vb = uer + ves = e(ur + vs).
\]

Dokázali jsme, že \(e \) dělí \(d \).

2.2.5. Tvrzení. Nechť \(m \) je kladné celé číslo. Pro každé celé číslo \(k \) platí:

\[
 \overline{k} \in U(\mathbb{Z}_m) \iff \text{NSD}(k, m) = 1.
\]

Důkaz. Buď \(k \) celé číslo.

Nechť \(\overline{k} \in U(\mathbb{Z}_m) \). Chceme: \(\text{NSD}(k, m) = 1 \).

Existuje celé číslo \(l, \overline{k} \cdot \overline{l} = \overline{1} \). Tedy \(k \overline{l} = \overline{1}, kl \equiv 1 \ (m) \), \(m \) dělí \(1 - kl \), \(1 - kl = mq \) pro nějaké \(q \in \mathbb{Z} \). Buď \(d \in \mathbb{Z} \), \(d \) dělí \(k \), \(d \) dělí \(m \). Je třeba ukázat, že \(d \) dělí \(1 \). Pak bude jasné, že \(\text{NSD}(k, m) = 1 \). Je \(1 = mq + kl \). Protože \(d \) dělí \(m \), \(d \) dělí \(k \), dostáváme: \(d \) dělí \(1 \).

Nechť \(\text{NSD}(k, m) = 1 \). Chceme: \(\overline{k} \in U(\mathbb{Z}_m) \). Použijeme Bezoutovu rovnost (2.2.4.). Existují taková celá čísla \(u, v \), že \(1 = uk + vm \). Pak \(1 - uk = vm \), \(m \) dělí \(1 - uk \), \(uk \equiv 1 \ (m) \), \(\overline{uk} = \overline{1}, \pi \cdot \overline{k} = \overline{1} \). Vidíme, že \(\overline{k} \) je jednotka okruhu \(\mathbb{Z}_m \) (čili \(\overline{k} \in U(\mathbb{Z}_m) \)).
2.2.6. Věta. Nechť m je kladné celé číslo. Platí:
\[\text{card}(U(\mathbb{Z}_m)) = \varphi(m). \]

Důkaz. Uvědomme si, že okruh \mathbb{Z}_m má přesně m prvků, totiž $0, 1, \ldots, m - 1$ (viz 2.1.6.). Buď k celé číslo, $0 \leq k \leq m - 1$. Dle 2.2.5. je $k \in U(\mathbb{Z}_m)$ právě tehdy, když $\text{NSD}(k, m) = 1$. Pak
\[\text{card}(U(\mathbb{Z}_m)) = \text{card} \{ k \in \mathbb{Z} \mid 0 \leq k < m, \text{NSD}(k, m) = 1 \}. \]
Nyní si pouze uvědomme, že
\[\varphi(m) = \text{card} \{ k \in \mathbb{Z} \mid 0 \leq k < m, \text{NSD}(k, m) = 1 \}. \]

Zvolme například $m = 10$. Je $\varphi(10) = 4$, tudíž $\text{card}(U(\mathbb{Z}_{10})) = 4$. Prvky grupy $U(\mathbb{Z}_{10})$ jsou $1, 3, 7, 9$. Zde je tabulka násobení v grupě $U(\mathbb{Z}_{10})$:

```
\begin{array}{c|cccc}
    \cdot & 1 & 3 & 7 & 9 \\
\hline
    1 & 1 & 3 & 7 & 9 \\
    3 & 3 & 9 & 1 & 7 \\
    7 & 7 & 1 & 9 & 3 \\
    9 & 9 & 7 & 3 & 1
\end{array}
```

2.3 Symetrická grupa

S největší pravděpodobností již znáte pojem permutace. Například v lineární algebře se o něm většinou hovoří před vyslovením definice determinantu matic.

2.3.1. Definice. Nechť M je množina. **Permutací množiny** M rozumíme každou bijekci množiny M na množinu M. Množinu všech permutací množiny M budeme značit $S(M)$. Tedy
\[S(M) = \{ \pi : M \to M \mid \pi \text{ je permutace} \}. \]
2.3. SYMETRICKÁ GRUPA

2.3.2. Věta. Množina $S(M)$ s operací skládání zobrazení je grupa.

Důkaz. Například [3], 6.1.2.

2.3.3. Definice. Grupa $S(M)$ se nazývá symetrická grupa množiny M. Nechť $n \in \mathbb{N}$. Místo $S(\{1, 2, \ldots, n\})$ píšeme S_n a hovoříme o symetrické grupě n prvků.

2.3.4. Věta. Nechť M je množina. Platí:

Grupa $S(M)$ je komutativní právě tehdy, když množina M má nejvýše 2 prvky.

Speciálně: S_1, S_2 jsou komutativní, S_3, S_4, S_5, S_6 atd. jsou nekomutativní.

Důkaz. Například [3], 6.1.4.

2.3.5. Věta. Nechť $n \in \mathbb{N}$. Grupa S_n je konečná a má $n!$ prvků.

Důkaz. Důkaz přenecháváme čtenáři.

2.3.6. Označení. Nechť $n \in \mathbb{N}, \pi \in S_n$. Někdy budeme psát

$$\pi = \begin{pmatrix}
1 & 2 & \ldots & n \\
\pi(1) & \pi(2) & \ldots & \pi(n)
\end{pmatrix}.$$

2.3.7. Definice. Nechť $n \in \mathbb{N}, i, j \in \{1, 2, \ldots, n\}, i \neq j$. Definujeme permutaci $(i \leftrightarrow j) \in S_n$ takto:

$(i \leftrightarrow j)(i) = j$
$(i \leftrightarrow j)(j) = i$
$(i \leftrightarrow j)(k) = k$ pro každé $k \in \{1, 2, \ldots, n\} - \{i, j\}$.

Permutace $(i \leftrightarrow j)$ se nazývá transpozice prvků i a j.

2.3.8. Věta. Nechť $n \in \mathbb{N}$, $n \geq 2$, $\pi \in S_n$. Platí:

existují transpozice $\tau_1, \tau_2, \ldots, \tau_k \in S_n (k \in \mathbb{N})$ tak, že $\pi = \tau_1 \tau_2 \ldots \tau_k$.

Důkaz. Například [3], 6.1.8.

2.3.9. Definice. Nechť $n \in \mathbb{N}$, $\pi \in S_n$, $(i, j) \in \{1, 2, \ldots, n\}^2$.

Dvojice (i, j) se nazývá inverze v permutaci π, platí-li:

1. $i < j$
2. \(\pi(i) > \pi(j) \).

\(\pi \) se nazývá **sudá permutace**, je-li počet všech inverzí v permutaci \(\pi \) sudý. \(\pi \) se nazývá **lichá permutace**, je-li počet všech inverzí v permutaci \(\pi \) lichý. Dále definujeme

\[
Sg(\pi) = \begin{cases}
1 & \text{pro sudou permutaci } \pi \\
-1 & \text{pro lichou permutaci } \pi.
\end{cases}
\]

2.3.10. **Tvrzení.** Nechť \(n \in \mathbb{N}, \tau \in S_n, \tau \) je transpozice. Platí: \(Sg(\tau) = -1 \).

Důkaz. Například [3], 6.2.2.

2.3.11. **Věta.** Nechť \(n \in \mathbb{N}, \pi, \tau \in S_n, \tau \) je transpozice. Platí: \(Sg(\tau \pi) = -Sg(\pi) \).

Důkaz. Například [3], 6.2.3.

2.3.12. **Věta.** Nechť \(n \in \mathbb{N}, \pi, \rho \in S_n \). Platí:

\[
Sg(\pi \rho) = Sg(\pi) \cdot Sg(\rho).
\]

Důkaz. Například [3], 6.2.4.

2.3.13. **Příklad.** Uvedeme příklad symetrické grupy \(S_3 \). Grupa \(S_3 \) není komutativní (viz 2.3.4.) a má \(3! = 6 \) prvků:

\[
i = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}, a = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix}, b = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}, c = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix}, d = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}, e = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix}.
\]
2.3. SYMETRICKÁ GRUPA

Počítejme:

\[
\begin{array}{c|cccccc}
 & i & a & b & c & d & e \\
i & i & a & b & c & d & e \\
a & a & i & e & d & c & b \\
b & b & d & i & e & a & c \\
c & c & e & d & i & b & a \\
d & d & b & c & a & e & i \\
e & e & c & a & b & i & d \\
\end{array}
\]
Nyní permutace z grupy S_3 rozložíme na součin transpozic (viz 2.3.8.).

\[i = (1 \leftrightarrow 2)(1 \leftrightarrow 2) \]
\[a = (2 \leftrightarrow 3) \]
\[b = (1 \leftrightarrow 3) \]
\[c = (1 \leftrightarrow 2) \]
\[d = (1 \leftrightarrow 2)(1 \leftrightarrow 3) \]
\[e = (1 \leftrightarrow 3)(1 \leftrightarrow 2) \]

Konečně, pro každé $\pi \in S_3$ určíme $Sg(\pi)$.

V permutaci i je nula inverzí, takže $Sg(i) = 1$

V permutaci a je jedna inverze $(2, 3)$, takže $Sg(a) = -1$

V permutaci b jsou tři inverze $(1, 2)$, $(1, 3)$, $(2, 3)$, takže $Sg(b) = -1$

V permutaci c je jedna inverze $(1, 2)$, takže $Sg(c) = -1$

V permutaci d jsou dvě inverze $(1, 3)$, $(2, 3)$, takže $Sg(d) = 1$

V permutaci e jsou dvě inverze $(1, 2)$, $(1, 3)$, takže $Sg(e) = 1$.

Nyní dokážeme: Jestliže považujeme izomorfní grupy za stejné, pak jediné grupy, které existují, jsou symetrické grupy a jejich podgrupy.

Důkaz. Buď $a \in G$. Definujeme zobrazení $\varphi(a) : G \to G$ takto:

\[\varphi(a) = xa \]

$(x \in G)$.

Ukážeme, že $\varphi(a)$ je bijekce, tj. že $\varphi(a) \in S(G)$.

(I) $\varphi(a)$ je injekce:

Nechť $x, y \in G$, $\varphi(a)(x) = \varphi(a)(y)$. Chceme: $x = y$.

Víme, že $xa = ya$. Dle zákonů o krácení pak $x = y$.

(II) $\varphi(a)$ je surjekce:

Buď $y \in G$. Hledáme $x \in G$ takové, že $\varphi(a)(x) = y$.

Položme $x = ya^{-1}$. Pak $\varphi(a)(x) = \varphi(a)(ya^{-1}) = (ya^{-1})a = y(aa^{-1}) = y \cdot 1 = y$.

Máme tedy zobrazení $\varphi : G \to S(G)$. Ukážeme, že φ je injektivní homomorfní.
2.3. SYMETRICKÁ GRUPA

(I) ϕ je injekce:
Nechť a, b ∈ G, ϕ(a) = ϕ(b). Chceme: a = b.
Určitě ϕ(a)(1) = ϕ(b)(1). Takže 1 · a = 1 · b, a = b.

(II) ϕ je homomorfismus:
Nechť a, b ∈ G. Chceme: ϕ(ab) = ϕ(a)ϕ(b).
Je potřeba dokázat rovnost zobrazení ϕ(ab), ϕ(a)ϕ(b). Máme tedy pro každé
x ∈ G ukázat, že ϕ(ab)(x) = (ϕ(a)ϕ(b))(x).

Počítejme:
(ϕ(a)ϕ(b))(x) = ϕ(b)(ϕ(a)(x)) = ϕ(b)(xa) = (xa)b = x(ab) = ϕ(ab)(x).
Na závěr si uvědomme, že grupa G je izomorfní podgrupě ϕ(G) grupy S(G).

2.3.15. Příklad. Grupa Z₄ je izomorfní jisté podgrupě v S₄. Vezměme zob-
razení ϕ : Z₄ → S(Z₄) z důkazu věty 2.3.14. Pro stručnost budeme psát
pouze 0 místo 0, 1 místo 1 atd.

ϕ(0) = \begin{pmatrix} 0 & 1 & 2 & 3 \\ 0 & 1 & 2 & 3 \end{pmatrix} = i, ϕ(1) = \begin{pmatrix} 0 & 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix} = a
ϕ(2) = \begin{pmatrix} 0 & 1 & 2 & 3 \\ 2 & 3 & 0 & 1 \end{pmatrix} = b, ϕ(3) = \begin{pmatrix} 0 & 1 & 2 & 3 \\ 3 & 0 & 1 & 2 \end{pmatrix} = c

a · a = \begin{pmatrix} 0 & 1 & 2 & 3 \\ 1 & 2 & 3 & 0 \end{pmatrix}, a · b = \begin{pmatrix} 0 & 1 & 2 & 3 \\ 0 & 1 & 2 & 3 \end{pmatrix}, c · a = \begin{pmatrix} 0 & 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix},
a · c = \begin{pmatrix} 0 & 1 & 2 & 3 \\ 2 & 3 & 0 & 1 \end{pmatrix}, b · a = \begin{pmatrix} 0 & 1 & 2 & 3 \\ 2 & 3 & 0 & 1 \end{pmatrix}, b · b = \begin{pmatrix} 0 & 1 & 2 & 3 \\ 2 & 3 & 0 & 1 \end{pmatrix}, c · b = \begin{pmatrix} 0 & 1 & 2 & 3 \\ 3 & 0 & 1 & 2 \end{pmatrix},
b · c = \begin{pmatrix} 0 & 1 & 2 & 3 \\ 3 & 0 & 1 & 2 \end{pmatrix}, c · c = \begin{pmatrix} 0 & 1 & 2 & 3 \\ 3 & 0 & 1 & 2 \end{pmatrix}

Grupy Z₄ a ϕ(Z₄) jsou izomorfní - snadno to nahlédneme při porovnání
tabulek násobení v obou grupách.

\[
\begin{array}{c|cccc}
Z₄ & 0 & 1 & 2 & 3 \\
\hline
0 & 0 & 1 & 2 & 3 \\
1 & 1 & 2 & 3 & 0 \\
2 & 2 & 3 & 0 & 1 \\
3 & 3 & 0 & 1 & 2 \\
\end{array}
\]
KAPITOLA 2. PŘÍKLADY GRUP

\[
\varphi(\mathbb{Z}_4) \begin{array}{c|ccc}
 \varphi(Z_4) & i & a & b & c \\
 i & i & a & b & c \\
 a & a & b & c & i \\
 b & b & c & i & a \\
 c & c & i & a & b \\
\end{array}
\]

2.4 Alternující grupa

2.4.1. Označení. Nechť \(n \in \mathbb{N} \). Klademe

\[
A_n = \{ \pi \in S_n \mid Sg(\pi) = 1 \}.
\]

2.4.2. Tvrzení. Nechť \(n \in \mathbb{N} \). Platí: \(A_n \) je podgrupa grupy \(S_n \).

Důkaz. Například [3], 6.3.2.

Grupa \(A_n \) se nazývá alternující grupa \(n \) prvků.

2.4.3. Tvrzení. Nechť \(n \in \mathbb{N} \), \(n \geq 2 \). Platí: \(\text{card}(A_n) = \frac{1}{2}\text{card}(S_n) \) (tedy \(\text{card}(A_n) = \frac{n!}{2} \)).

Důkaz. Například [3], 6.3.3.

2.4.4. Příklad. Alternující grupa \(A_3 \) má \(\frac{3!}{2} = 3 \) prvky. Vypišme všechny prvky grupy \(S_3 \):

\[
i = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix},
a = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix},
b = \begin{pmatrix} 1 & 3 & 2 \\ 2 & 3 & 1 \end{pmatrix},
c = \begin{pmatrix} 1 & 3 & 2 \\ 3 & 1 & 2 \end{pmatrix},
d = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix},
e = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix}.
\]

V příkladu 2.3.13. jsme zjistili, že \(Sg(i) = 1, Sg(a) = -1, Sg(b) = -1, Sg(c) = -1, Sg(d) = 1, Sg(e) = 1 \). Takže \(A_3 = \{ i, d, e \} \). Uvedeme ještě tabulku násobení v grupě \(A_3 \).

\[
\begin{array}{c|ccc}
 A_3 & i & d & e \\
 i & i & d & e \\
 d & d & e & i \\
 e & e & i & d \\
\end{array}
\]
2.5 Obecná lineární grupa

Nechť T je těleso, $m, n \in \mathbb{N}$. Množinu všech matic typu (m, n) nad tělesem T budeme značit $T_{m,n}$.

Jestliže $A \in T_{m,n}$, pak $h(A)$ značí hodnost matice A. Jestliže $A \in T_{n,n}$, pak $|A|$ značí determinant matice A a A^{-1} značí matici inverzní k matici A.

Nechť $A \in T_{n,n}$. Uvažme následující tři výroky:

(I) $h(A) = n$
(II) $|A| \neq 0$
(III) matice A^{-1} existuje.

Z lineární algebry víme, že výroky (I), (II), (III) jsou ekvivalentní. Matice A, pro niž jsou výroky (I), (II) a (III) pravdivé, se nazývá regulární.

Podrobnější informace o maticích (včetně důkazů) může čtenář najít například v kapitolách 5 a 7 studijního textu [3].

Nechť $GL(n, T)$ je množina všech čtvercových regulárních matic n-tého stupně nad tělesem T. Tedy

$$GL(n, T) = \{ A \in T_{n,n} | h(A) = n \}.$$

2.5.1. Tvrzení. Množina $GL(n, T)$ s operací násobení matic je grupa.

Důkaz. Nejdříve se musíme přesvědčit, že množina $GL(n, T)$ je uzavřená vzhledem k operaci násobení matic. Nechť $A, B \in GL(n, T)$. Chceme: $A \cdot B \in GL(n, T)$. Víme: $A, B \in T_{n,n}$, $|A| \neq 0$, $|B| \neq 0$. Zřejmě $A \cdot B \in T_{n,n}$. Dále, $|A \cdot B| = |A| \cdot |B| \neq 0$. Víme, že $A \cdot B \in GL(n, T)$. Je dobře známo, že operace násobení čtvercových matic n-tého stupně je asociativní a má neutrální prvek E_n (jednotková matice n-tého stupně). Uvědomte si, že $|E_n| = 1 \neq 0$, takže $E_n \in GL(n, T)$. Nechť $A \in GL(n, T)$. Protože A je regulární, existuje matice A^{-1}. Platí: $A \cdot A^{-1} = A^{-1} \cdot A = E_n$. Pro determinanty pak máme $|A \cdot A^{-1}| = |E_n|$, $|A| \cdot |A^{-1}| = 1$. Z toho vyplývá, že $|A^{-1}| \neq 0$ a tudíž $A^{-1} \in GL(n, T)$.

2.5.2. Definice. Nechť T je těleso, $n \in \mathbb{N}$. Grupa $GL(n, T)$ se nazývá obecná lineární grupa.

Všimněme si, že $GL(1, T) \cong T^\times$.
2.5.3. Tvrzení. Nechť T je těleso, $n \in \mathbb{N}$. Platí: grupa $GL(n,T)$ je komutativní právě tehdy, když $n = 1$.

Důkaz.
⇒: Předpokládejme, že $n > 1$. Ukážeme, že $GL(n,T)$ není komutativní. Definujeme matrici $A \in T_{n,n}$ takto: $a_{ii} = 1$ pro $1 \leq i \leq n$, $a_{12} = 1$, $a_{ij} = 0$ v ostatních případech. Definujeme matrici $B \in T_{n,n}$ takto: $b_{ii} = 1$ pro $1 \leq i \leq n$, $b_{21} = 1$, $b_{ij} = 0$ v ostatních případech. Položme $C = A \cdot B$, $D = B \cdot A$. Je $c_{11} = d_{11} = 1$. Pak $1 + 1 = 1$, $1 = 0$, spor. Nutně tedy $c_{11} \neq d_{11}$, $A \cdot B \neq B \cdot A$. Dále, $|A| = 1$, $|B| = 1$, takže $A, B \in GL(n,T)$. Ukázali jsme, že grupa $GL(n,T)$ není komutativní.
⇐: Grupa $GL(1,T)$ je komutativní, protože $GL(1,T) \cong T^\times$.

2.5.4. Tvrzení. Nechť T je těleso, $n \in \mathbb{N}$. Platí: grupa $GL(n,T)$ je konečná právě tehdy, když těleso T je konečné.

Důkaz.
⇒: Předpokládejme, že těleso T je nekonečné. Ukážeme, že grupa $GL(n,T)$ je nekonečná. Buď $c \in T$, $c \neq 0$. Uvažme následující diagonální matrici $A \in T_{n,n}$: $a_{11} = c$, $a_{ii} = 1$ pro $2 \leq i \leq n$. Je $|A| = c \neq 0$, takže $A \in GL(n,T)$. Sestrojili jsme nekonečně mnoho prvků grupy $GL(n,T)$.
⇐: Grupa $GL(n,T)$ je konečná, protože množina $T_{n,n}$ je konečná.

Jestliže p je prvočíslo, pak \mathbb{Z}_p je těleso. Grupa $GL(n,\mathbb{Z}_p)$ se někdy označuje $GL(n,p)$. Kolik prvků má grupa $GL(n,p)$?

2.5.5. Věta. Nechť T je konečné těleso, $\text{card}(T) = q$. Nechť $n \in \mathbb{N}$. Platí:

$$\text{card}(GL(n,T)) = (q^n - 1) \cdot (q^n - q) \cdot (q^n - q^2) \cdots \cdot (q^n - q^{n-1}).$$

Důkaz. Je třeba určit počet všech čtvercových regulárních matic n-tého stupně nad tělesem T. Buď $A \in T_{n,n}$. Pro $i \in \{1, 2, \ldots, n\}$ označme i-tý řádek matice A symbolem $\overrightarrow{a_i}$. Chceme, aby A byla regulární. Lze tedy vektor $\overrightarrow{a_i}$ zvolit libovolně až na to, že musí být $\overrightarrow{a_i} \neq \overrightarrow{0}$. Tudíž existuje $q^n - 1$ způsobů, jak zvolit vektor $\overrightarrow{a_i}$. Předpokládejme, že vektor $\overrightarrow{a_i}$ je již vybrán. Vektory $\overrightarrow{a_i}$,
2.6. GRUPA SYMETRIÍ OBRAZCE

→ _{2} jsou lineárně nezávislé. Je tedy → _{2} ∈ T^n − ⟨{→ _{1}}⟩. Tůdž existuje q^n − q způsob, jak zvolit vektor → _{2}. Vidíme, že první dva řádky matice A lze zvolit (q^n − 1) · (q^n − q) způsoby. Předpokládejme, že vektory → _{1}, → _{2} jsou již vybrány. Vektory → _{1}, → _{2}, → _{3} jsou lineárně nezávislé. Je tedy → _{3} ∈ T^n − ⟨{→ _{1}, → _{2}}⟩. Tůdž existuje q^n − q^2 způsob, jak zvolit vektor → _{3}. Vidíme, že první tři řádky matice A lze zvolit (q^n − 1) · (q^n − q) · (q^n − q^2) · · · · · · (q^n − q^{n−1}) způsoby.

2.5.6. Příklad.

1. Grupa GL(3, 3) má (3^3 − 1) · (3^3 − 3) · (3^3 − 3^2) = 26 · 24 · 18 = 11232 prvků.
2. Grupa GL(3, 2) má (2^3 − 1) · (2^3 − 2) · (2^3 − 2^2) = 7 · 6 · 4 = 168 prvků.
3. Grupa GL(2, 3) má (3^2 − 1) · (3^2 − 3) = 8 · 6 = 48 prvků.
4. Grupa GL(2, 2) má (2^2 − 1) · (2^2 − 2) = 3 · 2 = 6 prvků. Jsou to tyto prvky:

\[
\begin{pmatrix}
1 & 0 \\
0 & 1
\end{pmatrix}, \begin{pmatrix}
1 & 0 \\
1 & 1
\end{pmatrix}, \begin{pmatrix}
0 & 1 \\
1 & 0
\end{pmatrix}, \begin{pmatrix}
0 & 1 \\
1 & 1
\end{pmatrix}, \begin{pmatrix}
1 & 1 \\
1 & 0
\end{pmatrix}, \begin{pmatrix}
1 & 1 \\
0 & 1
\end{pmatrix}.
\]

2.6 Grupa symetrií obrazce

Nejdříve připomeneme pojem metrického prostoru. Nechť X je neprázdná množina, d : X^2 → R. Dvojice (X, d) se nazývá metrický prostor, pokud platí:

1. d(a, b) ≥ 0 (pro všechna a, b ∈ X)
2. d(a, b) = 0 právě tehdy, když a = b (pro všechna a, b ∈ X)
3. d(a, b) = d(b, a) (pro všechna a, b ∈ X)
4. d(a, b) ≤ d(a, c) + d(c, b) (pro všechna a, b, c ∈ X).

Zobrazení d se nazývá metrika. Prvky metrického prostoru se nazývají zpravidla body. Jsou-li a, b body, pak jejich vzdáleností rozumíme číslo d(a, b).
Zmíníme nyní dva základní příklady metrických prostorů. Množina \mathbb{R} všech reálných čísel je metrický prostor, definujeme-li $d(a, b) = |a - b|$. Také \mathbb{R}^2 je metrický prostor, definujeme-li $d(A, B) = \sqrt{(a_1 - b_1)^2 + (a_2 - b_2)^2}$ pro $A = (a_1, a_2)$, $B = (b_1, b_2)$. V příkladech by bylo možno pokračovat (\mathbb{R}^3, \mathbb{R}^4 atd.). Samozřejmě existují i další metrické prostory.

Kdo má hlubší zájem o metrické prostory, může se obrátit například ke knize [1] nebo ke skriptu [2].

Obrazcem v metrickém prostoru (X, d) rozumíme libovolnou množinu $\Delta \subseteq X$.

2.6.1. Definice. Nechť (X, d) je metrický prostor, $\Delta \subseteq X$. Bijekce $\pi : \Delta \to \Delta$ se nazývá symetrie obrazce Δ, pokud pro všechna $a, b \in \Delta$ platí:

$$d(\pi(a), \pi(b)) = d(a, b).$$

Označíme

$$Sym(\Delta) = \{\pi \in S(\Delta) | \text{ } \pi \text{ je symetrie obrazce } \Delta\}.$$

2.6.2. Tvrzení. Nechť (X, d) je metrický prostor, $\Delta \subseteq X$. Platí: $Sym(\Delta)$ je podgrupa grupy $S(\Delta)$.

Důkaz. Je třeba dokázat následující tři věci:

(I) $id_\Delta \in Sym(\Delta)$

(II) Jestliže $\pi \in Sym(\Delta)$, pak $\pi^{-1} \in Sym(\Delta)$.

(III) Jestliže $\pi, \varrho \in Sym(\Delta)$, pak $\pi \varrho \in Sym(\Delta)$.

ad (I): Podmínka je zřejmě splněna.

ad (II): Nechť $\pi \in Sym(\Delta)$, nechť $a, b \in \Delta$. Chceme: $d(\pi^{-1}(a), \pi^{-1}(b)) = d(a, b)$. Jelikož $\pi \in Sym(\Delta)$, je $d(\pi(\pi^{-1}(a)), \pi(\pi^{-1}(b))) = d(\pi^{-1}(a), \pi^{-1}(b))$. Stačí si uvědomit, že $\pi(\pi^{-1}(a)) = a$, $\pi(\pi^{-1}(b)) = b$.

ad (III): Nechť $\pi, \varrho \in Sym(\Delta)$, nechť $a, b \in \Delta$. Chceme: $d((\pi \varrho)(a), (\pi \varrho)(b)) = d(a, b)$. Počítejme:

$$d((\pi \varrho)(a), (\pi \varrho)(b)) = d(\varrho(\pi(a)), \varrho(\pi(b)))$$

$$= d(\pi(a), \pi(b))$$

$$= d(a, b).$$
2.6. GRUPA SYMETRIÍ OBRAZCE

2.6.3. Definice. Nechť (X,d) je metrický prostor, $\Delta \subseteq X$. Grupu symetrií obrazce Δ definujeme jako grupu $\text{Sym}(\Delta)$.

2.6.4. Příklad. Nechť (X,d) je diskrétní metrický prostor, tedy

$$d(a,b) = \begin{cases} 0 & \text{pokud } a = b \\ 1 & \text{pokud } a \neq b \end{cases}$$

Buď $\Delta \subseteq X$, $\pi \in \text{Sym}(\Delta)$, $a,b \in \Delta$. Jestliže $a = b$, pak $\pi(a) = \pi(b)$, $d(a,b) = 0$, $d(\pi(a), \pi(b)) = 0$. Jestliže $a \neq b$, pak $\pi(a) \neq \pi(b)$, $d(a,b) = 1$, $d(\pi(a), \pi(b)) = 1$. V každém případě tedy $d(\pi(a), \pi(b)) = d(a,b)$ a $\pi \in \text{Sym}(\Delta)$. Ukázali jsme, že $\text{Sym}(\Delta) = S(\Delta)$.

2.6.5. Příklad. Nechť (X,d) je metrický prostor, A, B, C jsou tři různé body prostoru X. Uvažme $\Delta = \{A, B, C\}$.

Jestliže trojúhelník ABC je rovnostranný, pak zřejmě $\text{Sym}(\Delta) = S(\Delta) \cong S_3$.

Nechť trojúhelník ABC je rovnonosný, nikoli však rovnostranný. Pro určitost předpokládejme, že $d(A,B) = d(A,C)$. Buď $\pi \in \text{Sym}(\Delta)$. Snadno se nahlédne, že $\pi(B) = B$, $\pi(C) = C$ nebo $\pi(B) = C$, $\pi(C) = B$. V prvním případě $\pi = (ABC)$, ve druhém případě $\pi = (ACB)$. Tudíž $\text{Sym}(\Delta) = \{(ABC), (ACB)\} \cong \mathbb{Z}_2$.

Nechť trojúhelník ABC je obecný, nikoli rovnonosný. Buď $\pi \in \text{Sym}(\Delta)$. Je $\pi(A) = A$, $\pi(B) = B$, $\pi(C) = C$ nebo $\pi(A) = B$, $\pi(B) = A$. Druhý případ není možný, neboť by dával $\pi = (BAC)$, $d(B,C) = d(A,C)$ a trojúhelník ABC byl rovnonosný. Takže $\pi = (BAC)$ a grupa $\text{Sym}(\Delta)$ je triviální.

2.6.6. Příklad. Uvažme metrický prostor (\mathbb{R}^2,d), ve kterém je $d(A,B) = \sqrt{(a_1-b_1)^2 + (a_2-b_2)^2}$ pro $A = (a_1, a_2)$, $B = (b_1, b_2)$. Buď K kružnice v (\mathbb{R}^2,d) se středem v bodě $(0,0)$. Grupu $\text{Sym}(K)$ je nekonečná. Buď $0 \leq \alpha < 2\pi$. Označme r_α otočení kružnice K o úhel α (střed otočení je v bodě $(0,0)$).

Pak $r_\alpha \in \text{Sym}(K)$ a tedy grupa $\text{Sym}(K)$ má nespočetně mnoho prvků.

2.6.7. Příklad. Uvažme metrický prostor (\mathbb{R},d), kde $d(a,b) = |a - b|$ pro $a, b \in \mathbb{R}$. Nechť Δ je uzavřený interval $[0,1]$. Nechť $0 \leq c \leq 1$. Definujeme zobrazení $f_c : \Delta \rightarrow \Delta$ takto:

$$f_c(x) = \begin{cases} c & \text{pro } x = 0 \\ 0 & \text{pro } x = c \\ x & \text{pro } x \neq 0, x \neq c \end{cases}$$
Zřejmě f_c je bijekce a tedy $f_c \in S(\Delta)$. Ukázali jsme, že grupa $S(\Delta)$ je ne-
spocetná.
Nyní uvidíme, že grupa $Sym(\Delta)$ má pouze dva prvky. Buď $f \in Sym(\Delta)$. Je
zřejmé, že nastane právě jedna ze dvou následujících možností:
(I) $f(0) = 0$, $f(1) = 1$
(II) $f(0) = 1$, $f(1) = 0$.
ad (I): Nechť $x \in \Delta$. Je $|f(x) - f(0)| = |x - 0|$, tj. $|f(x)| = |x|$, $f(x) = x$.
Takže $f = id$.
ad (II): Nechť $x \in \Delta$. Je $|f(x) - f(1)| = |x - 1|$, tj. $|f(x) - 0| = |x - 1|$,
$|f(x)| = |x - 1|$, $f(x) = 1 - x$. Ukázali jsme, že $Sym(\Delta) = \{id, f\}$, kde $f(x) = 1 - x$ pro $x \in \Delta$.

2.6.8. Věta. Nechť $n \in \mathbb{Z}$, $n \geq 3$. Nechť Δ je množina vrcholů pravidelného
n-úhelníka v prostoru \mathbb{R}^2 s metrikou $d(A, B) = \sqrt{(a_1 - b_1)^2 + (a_2 - b_2)^2}$, kde $A = (a_1, a_2)$, $B = (b_1, b_2)$. Pak $Sym(\Delta)$ je grupa řádu $2n$, která je generována
dvěma prvky S a T takovými, že $S^n = 1$, $T^2 = 1$ a $TST = S^{-1}$.

Důkaz. Pro $k \in \mathbb{Z}$ položme $V_k = (\cos k \frac{2\pi}{n}, \sin k \frac{2\pi}{n})$. Bez újmy na obec-
nostnosti lze předpokládat, že $\Delta = \{V_k| k \in \mathbb{Z}\} = \{V_0, V_1, \ldots, V_{n-1}\}$. Označme
S otočení obrazce Δ o úhel $\frac{2\pi}{n}$ (střed otáčení je v bodě $(0, 0)$). Pro každé
$k \in \mathbb{Z}$ je $S(V_k) = V_{k+1}$, $S^2(V_k) = S(S(V_k)) = S(V_{k+1}) = V_{k+2}$, \ldots, $S^n(V_k) =
V_{k+n} = V_k$. Vidíme, že $S^n = 1$. Označme T osovou souměrnost kolem osy x.
Pro každé $k \in \mathbb{Z}$ je $T(V_k) = V_{-k}$, $T^2(V_k) = T(T(V_k)) = T(V_{-k}) = V_k$.
Vidíme, že $T^2 = 1$. Bud $k \in \mathbb{Z}$. Pak $TST(V_k) = (ST)(T(V_k)) = (ST)(V_{-k}) =
T(S(V_{-k})) = T(V_{k+1}) = V_{k+1} = S^{-1}(V_k)$. Vidíme, že $TST = S^{-1}$. Jistě $S, T \in Sym(\Delta)$. Prvky $1, S, S^2, \ldots, S^{n-1}$ jsou navzájem různé. Také prvky $T, TS, TS^2, \ldots, TS^{n-1}$ jsou navzájem různé. Buď $i, j \in \{0, 1, \ldots, n-1\}$, $S^i = TS^j$. Pak $S^i(V_0) = (TS^j)(V_0), V_i = V_j, i = j$. Takže $S^i = TS^i, 1 = T,
spor. Tudiž $1, S, S^2, \ldots, S^{n-1}, T, TS, TS^2, \ldots, TS^{n-1}$ je $2n$ různých prvků
grupy $Sym(\Delta)$. Nyní stačí dokázat, že $\{1, S, \ldots, S^{n-1}, T, TS, \ldots, TS^{n-1}\} =
Sym(\Delta)$. \{1, S, \ldots, $S^{n-1}, T, TS, \ldots, TS^{n-1}\} \subseteq Sym(\Delta): Toto je jasné.
Sym(\Delta) \subseteq \{1, S, \ldots, S^{n-1}, T, TS, \ldots, TS^{n-1}\}$: Buď $P \in Sym(\Delta)$. Předpo-
kládejme, že $P(V_0) = V_i, i \in \{0, 1, \ldots, n-1\}$. Jsou dvě možnosti:
(I)$P(V_1) = V_{i+1}$
2.6. GRUPA SYMETRIÍ OBRAZCE

(II) \(P(V_i) = V_{i-1} \)

(ad I): V tomto případě \(P(V_2) = V_{i+2} \) nebo \(P(V_2) = V_i \). Druhý případ nenastává, protože \(P(V_0) = V_i \). Takže \(P(V_2) = V_{i+2} \). Dále pak \(P(V_3) = V_{i+3} \) atd. Celkem \(P = S^i \).

(ad II): V tomto případě \(P(V_2) = V_i \) nebo \(P(V_2) = V_{i-2} \). První případ nenastává, protože \(P(V_0) = V_i \). Takže \(P(V_2) = V_{i-2} \). Dále pak \(P(V_3) = V_{i-3} \) atd. Celkem \(P(V_k) = V_{-k+i} \) a \(P = TS^i \).

2.6.9. Definice. Nechť \(n \) je celé číslo, \(n \geq 3 \). Dihedrální grupa \(D_{2n} \) je grupa řádu \(2n \), která je generována dvěma prvky \(s \) a \(t \) takovými, že

\[s^n = 1, \quad t^2 = 1 \quad \text{a} \quad tst = s^{-1}. \]

2.6.10. Poznámka. Zabývejme se dihedrální grupou \(D_{2n} \).

Z \(tst = s^{-1} \) plyne \(t^2st = ts^{-1} \). Protože \(t^2 = 1 \), máme \(st = ts^{-1} \). Pak pro každé nezáporné celé číslo \(m \) platí:

\[s^m \cdot t = t \cdot s^{-m}. \]

Nechť \(i, k \in \{0, 1\}, j, l \in \{0, 1, \ldots, n-1\} \). Vypočítáme součin \((t^i s^j) \cdot (t^k s^l)\).

\[k = 0: (t^i s^j) \cdot (t^0 s^l) = t^i s^j t^0 s^l = t^i s^j t^l \]

\[k = 1: (t^i s^j) \cdot (t^1 s^l) = t^i(s^j t) s^l = t^i ts^{-j} s^l = t^{i+1} s^{-j} \]

V obou případech \((t^i s^j) \cdot (t^k s^l) = t^u s^v\) pro nějaké celá čísla \(u, v \). S využitím vztahů \(t^2 = 1, \quad s^n = 1 \) pak můžeme tvrdit, že existují \(a \in \{0, 1\}, \ b \in \{0, 1, \ldots, n-1\} \) s vlastností

\[(t^i s^j) \cdot (t^k s^l) = t^a s^b. \]

Vypočítejme ještě \((t^i s^j)^{-1}\). Je \((t^i s^j)^{-1} = (s^j)^{-1} (t^i)^{-1} = s^{-j} t^{-i}\). Protože \(s^n = 1, \quad t^2 = 1 \), existují \(c \in \{0, 1, \ldots, n-1\}, \ d \in \{0, 1\} \) taková, že \(s^{-j} = s^c, \ t^{-i} = t^d \). Pak \((t^i s^j)^{-1} = s^c t^d \).

Jestliže \(d = 0 \), pak \(s^c t^d = s^c t^0 = t^0 s^c = t^d s^c \).

Jestliže \(d = 1 \), pak \(s^c t^d = s^c t = ts^{-c} = t^d s^{-c} \).

Uvážíme-li vztah \(s^n = 1 \), lze tvrdit následující:

existují \(e \in \{0, 1, \ldots, n-1\}, \ d \in \{0, 1\} \) tak, že

\[(t^i s^j)^{-1} = t^d s^c. \]
KAPITOLA 2. PŘÍKLADY GRUP

Nechť nyní
\[H = \{ 1, s, \ldots, s^{n-1}, t, ts, \ldots, ts^{n-1} \}. \]

Výše provedené výpočty za využití vztahů \(s^n = 1, \ t^2 = 1, \ tst = s^{-1} \) ukazují, že \(H \) je podgrupa grupy \(D_{2n} \). Jelikož \(s, t \in H, \) je \(\langle s, t \rangle \subseteq H \). Protože \(\langle s, t \rangle = D_{2n} \), máme \(H = D_{2n} \). Můžeme tedy učinit následující závěry:

1. Grupa \(D_{2n} \) má \(2n \) prvků, a to konkrétně
\[1, s, s^2, \ldots, s^{n-1}, t, ts, ts^2, \ldots, ts^{n-1}. \]

2. Výpočty v grupě \(D_{2n} \) lze provádět pomocí vztahů \(s^n = 1, \ t^2 = 1, \ tst = s^{-1} \).

3. Předchozí dva body ukazují, že definice 2.6.9. určuje grupu \(D_{2n} \) jednoznačně.

4. Grupa \(D_{2n} \) není komutativní. Abychom to zdůvodnili, tak předpokládejme opak, tj. že \(D_{2n} \) je komutativní. Pak \(ts = st, \ tst = st^2 = s \).

Ovšem \(tst = s^{-1}, \) takže \(s = s^{-1}, s^2 = 1. \) Dostali jsme spor s bodem 1.

2.6.11. Poznámka. Z věty 2.6.8. vyplývá, že dihedrální grupa \(D_{2n} \) je grupa symetrií množiny vrcholů pravidelného \(n \)-úhelníka.

2.6.12. Příklad. Sestrojíme tabulku násobení v grupě \(D_6 \). Dle poznámky 2.6.10. má grupa \(D_6 \) těchto 6 prvků:
\[1, s, s^2, t, ts, ts^2. \]

Uvědomme si, že \(s^3 = 1, \ t^2 = 1, \ tst = s^{-1} \) (tj. \(st = ts^{-1} \)).

Nyní provedeme potřebné výpočty:
\[s \cdot s = s^2, \ s \cdot s^2 = s^3 = 1, \ s \cdot t = ts^{-1} = ts^2, \ s \cdot ts = ts^{-1} = s = t, \ s \cdot ts^2 = ts^{-1} = s^2 = ts \]
\[s^2 \cdot s = s^3 = 1, \ s^2 \cdot s^2 = s^4 = s, \ s^2 \cdot t = st^{-1} = ts^{-2} = ts, \ s^2 \cdot ts = tss = ts^2, \]
\[s^2 \cdot ts^2 = tss^2 = t \]
\[t \cdot s = ts, \ t \cdot s^2 = ts^2, \ t \cdot t = t^2 = 1, \ t \cdot ts = s, \ t \cdot ts^2 = s^2 \]
\[ts \cdot s = ts^2, \ ts \cdot s^2 = ts^3 = t, \ ts \cdot t = s^{-1} = s^2, \ ts \cdot ts = s^{-1} = s = 1, \]
\[ts \cdot ts^2 = s^{-1} = s = s \]
\[ts^2 \cdot s = t, \ ts^2 \cdot s^2 = ts^4 = ts, \ ts^2 \cdot t = tsts = s, \ ts^2 \cdot ts = tsts^2 = s \]
2.7. KVATERNIONY

$ts^2 \cdot ts^2 = tt = 1$

Tabulka násobení v grupě D_6 vypadá následovně:

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>s</th>
<th>s^2</th>
<th>t</th>
<th>ts</th>
<th>ts^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>s</td>
<td>s^2</td>
<td>t</td>
<td>ts</td>
<td>ts^2</td>
</tr>
<tr>
<td>s</td>
<td>s</td>
<td>s^2</td>
<td>1</td>
<td>ts^2</td>
<td>t</td>
<td>ts</td>
</tr>
<tr>
<td>s^2</td>
<td>s^2</td>
<td>1</td>
<td>s</td>
<td>ts</td>
<td>ts^2</td>
<td>t</td>
</tr>
<tr>
<td>t</td>
<td>t</td>
<td>ts</td>
<td>ts^2</td>
<td>1</td>
<td>s</td>
<td>s^2</td>
</tr>
<tr>
<td>ts</td>
<td>ts</td>
<td>ts^2</td>
<td>t</td>
<td>s^2</td>
<td>1</td>
<td>s</td>
</tr>
<tr>
<td>ts^2</td>
<td>ts^2</td>
<td>t</td>
<td>ts</td>
<td>s</td>
<td>s^2</td>
<td>1</td>
</tr>
</tbody>
</table>

2.7 Kvaterniony

2.7.1. Definice. Kvaterniony je grupa $Q = \langle a, b \rangle$ řádu 8, v níž

$$a^4 = 1, \ b^2 = a^2 \ a \ bab^{-1} = a^{-1}.$$

2.7.2. Poznámka. Zabývejme se podrobněji grupou Q. Položme

$$H = \{1, a, a^2, a^3, b, ab, a^2b, a^3b\}.$$

Jelikož $bab^{-1} = a^{-1}$, máme $ba = a^{-1}b$.

Počítejme:

$1^{-1} = 1$

$a^{-1} = a^3$

$(a^2)^{-1} = a^2$

$(a^3)^{-1} = a$

$b^{-1} = a^2b \ (b \cdot a^2b = bb^2b = b^4 = (b^2)^2 = (a^2)^2 = a^4 = 1, \ a^2b \cdot b = a^2b^2 = a^2a^2 = a^4 = 1)$

$(ab)^{-1} = a^3b \ (ab \cdot a^3b = abaa^2b = aa^{-1}ba^2b = bb^2b = b^4 = 1, \ a^3b \cdot ab = a^3a^{-1}bb = a^2b^2 = a^2a^2 = a^4 = 1)$

$(a^2b)^{-1} = b$

$(a^3b)^{-1} = ab$

Ukázali jsme toto: Jestliže $x \in H$, pak $x^{-1} \in H$.

Ze vztahu $ba = a^{-1}b$ vyplývá, že

$$ba^m = a^{-m}b$$
pro každé nezáporné celé číslo \(m \).
Nechť \(i,k \in \{0,1,2,3\} \), \(j,l \in \{0,1\} \). Vypočítáme součin
\[
(a^i b^j) \cdot (a^k b^l).
\]
Jestliže \(j = 0 \), pak
\[
(a^i b^j) \cdot (a^k b^l) = a^i b^0 a^k b^l = a^{i+k} b^l.
\]
Jestliže \(j = 1 \), pak
\[
(a^i b^j) \cdot (a^k b^l) = a^i b a^k b^l = a^{i-k} b b^l = a^{i-k} b^{l+1}.
\]
V případě \(l = 0 \) máme
\[
(a^i b^j) \cdot (a^k b^l) = a^{i-k} b^0 = a^{i-k} b^1.
\]
V případě \(l = 1 \) máme
\[
(a^i b^j) \cdot (a^k b^l) = a^{i-k} b^2 = a^{i-k} a^2 = a^{i-k+2} b^0.
\]
Dokázali jsme: existují \(u \in \mathbb{Z} \), \(v \in \{0,1\} \) tak, že
\[
(a^i b^j) \cdot (a^k b^l) = a^u b^v.
\]
Protože \(a^4 = 1 \), existuje \(w \in \{0,1,2,3\} \), \(a^u = a^w \). Celkem existují \(w \in \{0,1,2,3\} \), \(v \in \{0,1\} \) s vlastností
\[
(a^i b^j) \cdot (a^k b^l) = a^w b^v.
\]
Právě jsme ukázali toto: Jestliže \(x,y \in H \), pak \(xy \in H \).
Z dosud provedených výpočtů vyplývá, že \(H \) je podgrupa grupy \(Q \). Jelikož \(a,b \in H \), je \(\langle a,b \rangle \subseteq H \). Ovšem \(\langle a,b \rangle = Q \), takže \(Q = H \).
Můžeme učinit následující závěry:

1. Grupa \(Q \) má přesně 8 prvků, a to konkrétně
\[
1, a, a^2, a^3, b, ab, a^2 b, a^3 b.
\]

2. Výpočty v grupě \(Q \) lze provádět pomocí vztahů \(a^4 = 1 \), \(b^2 = a^2 \), \(bab^{-1} = a^{-1} \).

3. Z předchozích dvou bodů vyplývá, že definice 2.7.1. určuje grupu kvaternionů jednoznačně.

4. Grupa \(Q \) není komutativní. Předpokládejme opak. Potom \(a^2 b = a b a = a a^{-1} b = b \). Dostali jsme spor s bodem 1.

2.7.3. Příklad. Uvažme následující čtvercové matice stupně 2 nad tělesem komplexních čísel:
\[
1 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \quad i = \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix}, \quad j = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad k = \begin{pmatrix} -i & 0 \\ 0 & i \end{pmatrix}.
\]
2.7. KVATERNIONY

Položme \(G = \{1, i, j, k, -1, -i, -j, -k\} \).

Množina \(G \) má 8 prvků. Je \(|1| = |i| = |j| = |k| = |-1| = |-i| = |-j| = |-k| = 1 \), takže \(G \subseteq GL(2, \mathbb{C}) \).

Počítejme:

\[
\begin{align*}
 i^2 &= \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix} \cdot \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix} = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} = -1 \\
 j^2 &= \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \cdot \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} = -1 \\
 k^2 &= \begin{pmatrix} -i & 0 \\ 0 & i \end{pmatrix} \cdot \begin{pmatrix} -i & 0 \\ 0 & i \end{pmatrix} = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} = -1 \\
 ij &= \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix} \cdot \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} = \begin{pmatrix} -i & 0 \\ 0 & i \end{pmatrix} = k \\
 jk &= \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \cdot \begin{pmatrix} -i & 0 \\ 0 & i \end{pmatrix} = \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix} = i \\
 ki &= \begin{pmatrix} -i & 0 \\ 0 & i \end{pmatrix} \cdot \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} = j \\
 ji &= \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \cdot \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix} = \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix} = -k \\
 kj &= \begin{pmatrix} -i & 0 \\ 0 & i \end{pmatrix} \cdot \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} = \begin{pmatrix} 0 & -i \\ -i & 0 \end{pmatrix} = -i \\
 ik &= \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix} \cdot \begin{pmatrix} -i & 0 \\ 0 & i \end{pmatrix} = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} = -j.
\end{align*}
\]

Buďte \(a, b \in \{1, i, j, k\} \). Pak platí:

\[
\begin{align*}
 ab &\in G \\
 (-a)b &= -(ab) \in G \\
 a(-b) &= -(ab) \in G \\
 (-a)(-b) &= ab \in G.
\end{align*}
\]

Ukázali jsme: Jestliže \(x, y \in G \), pak \(xy \in G \).

Dále platí:

\[
\begin{align*}
 1 \cdot 1 &= 1, \text{ takže } 1^{-1} = 1 \\
 (-1) \cdot (-1) &= 1 \cdot 1 = 1, \text{ takže } (-1)^{-1} = -1 \\
 a \cdot (-a) &= (-a) \cdot a = -a^2 = 1, \text{ takže } a^{-1} = -a, (-a)^{-1} = a \text{ (pro každé } a \in \{i, j, k\}).
\end{align*}
\]

Ukázali jsme: Jestliže \(x \in G \), pak \(x^{-1} \in G \).

Podařilo se nám dokázat, že \(G \) je podgrupa grupy \(GL(2, \mathbb{C}) \).

Dokážeme nyní, že \(G = \langle i, j \rangle \).
$\langle i, j \rangle \subseteq G$: To je jasné.
$G \subseteq \langle i, j \rangle$: $k = ij, -1 = i^2, -i = i^3, -j = j^3, -k = ji$.
Všimněme si ještě, že $i^4 = (i^2)^2 = (-1)^2 = 1, i^2 = j^2, jij^{-1} = ji(-j) = (-k)(-j) = k j = -i = i^{-1}$.
Lze tedy říci, že grupa G sestrojená v tomto příkladě je grupa kvaternionů, tj. $G = \mathbb{Q}$.
Kapitola 3

Lagrangeova věta a její důsledky

3.1 Lagrangeova věta

Nechť G je grupa, $a \in G$, $B \subseteq G$. Místo $\{a\} \cdot B = \{a\}B$ budeme stručně psát $a \cdot B = aB$. Je tedy

$$a \cdot B = aB = \{a \cdot y \mid y \in B\}.$$

Připomeňme si pojem rozklad množiny. Nechť M je množina. Rozkladem množiny M rozumíme jakýkoli systém S podmnožin množiny M s těmito vlastnostmi:

1. Pro všechna $A \in S$ platí: $A \neq \emptyset$.
2. $\bigcup_{A \in S} A = M$
3. Pro všechna $A, B \in S$ platí: Jestliže $A \cap B \neq \emptyset$, pak $A = B$. (Ekvivalentně: Jestliže $A \neq B$, pak $A \cap B = \emptyset$.)

3.1.1. Příklad. Položme

$A = \{3k \mid k \in \mathbb{Z}\} = \{\ldots, -6, -3, 0, 3, 6, \ldots\}$

$B = \{3k + 1 \mid k \in \mathbb{Z}\} = \{\ldots, -5, -2, 1, 4, 7, \ldots\}$

$C = \{3k + 2 \mid k \in \mathbb{Z}\} = \{\ldots, -4, -1, 2, 5, 8, \ldots\}$

Pak $\{A, B, C\}$ je rozklad množiny \mathbb{Z}.

63
KAPITOLA 3. LAGRANGEOVA VĚTA A JEJÍ DŮSLEDKY

3.1.2. Věta. Nechť \(G \) je grupa, \(H \) je podgrupa grupy \(G \). Pak systém množin
\[
\{ aH \mid a \in G \}
\]
je rozklad množiny \(G \).

Důkaz. Je třeba dokázat následující:
(I) Pro všechna \(a \in G \) platí: \(aH \neq \emptyset \).
(II) \(\bigcup_{a \in G} aH = G \)
(III) Pro všechna \(a, b \in G \) platí: Jestliže \(aH \cap bH \neq \emptyset \), pak \(aH = bH \).

ad (I): Jelikož \(H \) je podgrupa, je \(1 \in H \), a tedy \(a = a \cdot 1 \in aH \), \(aH \neq \emptyset \).

ad (II):
\(\bigcup_{a \in G} aH \subseteq G \): To je jasné.
\(G \subseteq \bigcup_{a \in G} aH \): Buď \(g \in G \). Pak \(g \in gH \subseteq \bigcup_{a \in G} aH \).

ad (III): Nechť \(a, b \in G \), \(aH \cap bH \neq \emptyset \). Chceme: \(aH = bH \). Buď \(c \in aH \cap bH \). Existují tedy \(h_1, h_2 \in H \), \(c = ah_1 \), \(c = bh_2 \). Pak \(ah_1 = bh_2 \), \(a = bh_2h_1^{-1} \). Zvolme libovolné \(g \in aH \). Existuje \(h \in H \), \(g = ah \). Pak \(g = bh_2h_1^{-1}h \). Protože \(h_2, h_1, h \in H \) a \(H \) je podgrupa, je \(h_2h_1^{-1}h \in H \) a \(g = bh_2h_1^{-1}h \in bH \). Prvek \(g \in aH \) jsme volili libovolně. Ukázali jsme tedy, že \(aH \subseteq bH \). Obdobně lze ukázat, že \(bH \subseteq aH \). Celkem tedy \(aH = bH \).

Rozklad \(\{ aH \mid a \in G \} \) z věty 3.1.2. budeme stručně označovat \(G/H \). Množina \(aH \) se nazývá levá třída grupy \(G \) podle podgrupy \(H \) (určená prv- kem \(a \)). Rozklad \(G/H \) je tedy rozklad grupy \(G \) na levé třídy podle podgrupy \(H \).

3.1.3. Definice. Nechť \(G \) je grupa, \(H \) je podgrupa grupy \(G \). Číslo \(\operatorname{card}(G/H) \) nazýváme index podgrupy \(H \) v \(G \) a značíme ho \([G : H] \).

3.1.4. Příklad. Nechť \(G \) je grupa. Pak
\[
[G : \{1\}] = \operatorname{card}(G/\{1\})
= \operatorname{card}(\{a \cdot \{1\} \mid a \in G\})
= \operatorname{card}(\{\{a \cdot 1\} \mid a \in G\})
= \operatorname{card}(\{\{a\} \mid a \in G\})
= \operatorname{card}(G).
\]
3.1. LAGRANGEOVA VĚTA

3.1.5. Příklad. Nechť G je grupa. Pak

$$[G : G] = \text{card}(G/G)$$
$$= \text{card}(\{aG | a \in G\})$$
$$= \text{card}(\{G | a \in G\})$$
$$= \text{card}(\{\})$$
$$= 1.$$

Využili jsme fakt, že $aG = G$ pro každé $a \in G$. Vztah $aG \subseteq G$ je jasný. Buď $g \in G$. Pak $g = a(a^{-1}g) \in aG$. tudíž $G \subseteq aG$.

3.1.6. Příklad. Uvažme grupu \mathbb{Z} a její podmnožiny A, B, C z příkladu 3.1.1. Zřejmě A je podgrupa grupy \mathbb{Z} (je $A = \langle 3 \rangle$). Určíme rozklad \mathbb{Z}/A.

$0 + A = A$
$1 + A = 1 + \{3k | k \in \mathbb{Z}\} = \{1 + 3k | k \in \mathbb{Z}\} = B$
$2 + A = 2 + \{3k | k \in \mathbb{Z}\} = \{2 + 3k | k \in \mathbb{Z}\} = C$
$3 + A = 3 + \{\ldots, -6, -3, 0, 3, 6, \ldots\} = \{\ldots, -3, 0, 3, 6, 9, \ldots\} = A$
$4 + A = 4 + \{\ldots, -6, -3, 0, 3, 6, \ldots\} = \{\ldots, -2, 1, 4, 7, 10, \ldots\} = B$
$5 + A = 5 + \{\ldots, -6, -3, 0, 3, 6, \ldots\} = \{\ldots, -1, 2, 5, 8, 11, \ldots\} = C$
$6 + A = 6 + \{\ldots, -6, -3, 0, 3, 6, \ldots\} = \{\ldots, 0, 3, 6, 9, 12, \ldots\} = A$
atd.

Obecně, nechť $x \in \mathbb{Z}$. Nastane právě jeden ze tří případů:
(I) $x = 3l$ pro nějaké $l \in \mathbb{Z}$
(II) $x = 3l + 1$ pro nějaké $l \in \mathbb{Z}$
(III) $x = 3l + 2$ pro nějaké $l \in \mathbb{Z}$.

ad (I): $x + A = A$
ad (II): $x + A = B$
ad (III): $x + A = C$

Tudíž $\mathbb{Z}/A = \{x + A | x \in \mathbb{Z}\} = \{A, B, C\}$ a $[\mathbb{Z} : A] = 3$.

3.1.7. Příklad. Uvažme grupu kvaternionů $\mathbb{Q} = \{1, i, j, k, -1, -i, -j, -k\}$ (viz 2.7.3.) a její podgrupu $H = \langle i \rangle = \{1, i, -1, -i\}$. Určíme rozklad \mathbb{Q}/H.

$1 \cdot H = H$

$i \cdot H = \{i, -1, -i, 1\} = H$

$j \cdot H = \{j, -k, -j, k\}$

$k \cdot H = \{k, j, -k, -j\}$

$-1 \cdot H = \{-1, -i, 1, i\} = H$

$-i \cdot H = \{-i, 1, i, -1\} = H$
-j \cdot H = \{-j, k, -k\}
-k \cdot H = \{-k, -j, k\}

Vidíme, že $Q/H = \{\{1, i, -1, -i\}, \{j, -k, -j, k\}\}$ a tedy $[Q : H] = 2$.

3.1.8. Tvrzení. Nechť G je grupa, H je podgrupa grupy G, $a \in G$. Pak $\text{card}(H) = \text{card}(aH)$.

Důkaz. Definujme zobrazení $f : H \rightarrow aH$ takto:

$$f(x) = ax$$

pro každé $x \in H$. Je zřejmé, že f je surjekce. Ukážeme, že f je injekce. Nechť $x, y \in H$, $f(x) = f(y)$. Chceme: $x = y$. Víme, že $ax = ay$. Stačí použít zákon o krácení.

Důkaz. Použijeme rozklad množiny G z věty 3.1.2. Všimněme si, že z konečnosti množiny G vyplývá konečnost množiny H (je $H \subseteq G$) a také konečnost množiny G/H (každá levá třída grupy G podle podgrupy H je neprázdná; kdyby levých tříd bylo nekonečně mnoho, musela by být množina G ne-konečná). Ze 3.1.8. plyne, že každá levá třída grupy G podle podgrupy H má stejný počet prvků, totiž $\text{card}(H)$. Jelikož počet levých tříd je roven $\text{card}(G/H)$, dostáváme

$$\text{card}(G/H) \cdot \text{card}(H) = \text{card}(G)$$

$$[G : H] \cdot \text{card}(H) = \text{card}(G).$$

Jasným důsledkem právě dokázaného vztahu je fakt $\text{card}(H)/\text{card}(G)$.

Důkaz. Prvek a má konečný řád podle 1.2.7. Řád prvku a označme n. Podle 1.4.18. podgrupa $\langle a \rangle$ má řád n. Podle Lagrangeovy věty řád podgrupy $\langle a \rangle$ dělí řád grupy G. Takže n dělí řád grupy G, řád prvku a dělí řád grupy G.
3.1.11. Tvrzení. Nechť \(G \) je konečná grupa řádu \(n \). Nechť \(a \in G \). Pak \(a^n = 1 \).

Důkaz. Dle 3.1.10. prvek \(a \) má konečný řád \(k \) a přitom \(k/n \). Existuje tedy přirozené číslo \(l \) tak, že \(n = k \cdot l \). Pak \(a^n = (a^k)^l = 1^l = 1 \).

Lagrangeova věta je základní věta teorie grup. Jako první se nabízí její aplikace při hledání všech podgrup konečné grupy.

3.1.12. Příklad. Úkol: Určete všechny podgrupy grupy \(\mathbb{Z}_{8161} \).

Řešení: Buď \(H \) podgrupa grupy \(\mathbb{Z}_{8161} \). Podle Lagrangeovy věty řád podgrupy \(H \) dělí řád grupy \(\mathbb{Z}_{8161} \), tedy \(\text{card}(H)/8161 \). Protože 8161 je prvočíslo, máme \(\text{card}(H) = 1 \) nebo \(\text{card}(H) = 8161 \). Tudíž grupa \(\mathbb{Z}_{8161} \) má dvě podgrupy, a to \(\{0\} \) a \(\mathbb{Z}_{8161} \).

3.1.13. Příklad. Úkol: Určete všechny podgrupy grupy \(S_3 \).

Řešení: Použijeme označení z příkladu 2.3.13. (v něm jsme se zabývali grupou \(S_3 \)). Uvědomte si, že grupa \(S_3 \) má řád \(3! = 6 \). Podle Lagrangeovy věty pak každá podgrupa grupy \(S_3 \) má řád 1, 2, 3 nebo 6.

Při určování podgrup (konečné) grupy \(G \) je vhodné zjistit řády všech prvků grupy \(G \). To má dva důvody:

1. Jestliže \(H \) je podgrupa grupy \(G \), \(a \in H \), pak řád prvku \(a \) dělí \(\text{card}(H) \) (viz 3.1.10.).

2. Jestliže prvek \(a \) má řád \(n \), pak \(\langle a \rangle \) má řád \(n \) a \(\langle a \rangle = \{1, a, a^2, \ldots, a^{n-1}\} \) (viz 1.4.18.).

Počítejme:
\[
\begin{align*}
a^2 &= i \\
b^2 &= i \\
c^2 &= i \\
d^2 &= e, \quad d^3 = de = i \\
e^2 &= d, \quad e^3 = ed = i.
\end{align*}
\]

Zjistili jsme, že prvky \(a, b, c \) mají řád 2, prvky \(d, e \) mají řád 3.

1. Podgrupy řádu 1: Zřejmě existuje jediná podgrupa řádu 1, a to \(\{i\} \).

2. Podgrupy řádu 2: Každá podgrupa řádu 2 má tvar \(\{1, x\} \), kde \(x \) je prvek řádu 2. Grupa \(S_3 \) tedy má tři podgrupy řádu 2: \(\{i, a\}, \{i, b\}, \{i, c\} \).
3. Podgrupy řádu 3: Každá podgrupa řádu 3 má tvar \{1, x, y\}, kde \(x, y\) jsou prvky řádu 3, \(x^2 = y, y^2 = x, xy = yx = 1\). Grupa \(S_3\) má tedy jednu podgrupu řádu 3, totiž \(\{i, d, e\}\). Uvědomme si, že \(\{i, d, e\} = A_3\).

4. Podgrupy řádu 6: Zřejmě existuje jediná podgrupa řádu 6, a to \(S_3\).

Shrnutí:
Grupa \(S_3\) má celkem 6 podgrup:
\(\{i\}, \{i, a\}, \{i, b\}, \{i, c\}, A_3, S_3\).

<table>
<thead>
<tr>
<th>(a^0)</th>
<th>(a^1)</th>
<th>(a^2)</th>
<th>(a^3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a^0)</td>
<td>(a^1)</td>
<td>(a^2)</td>
<td>(a^3)</td>
</tr>
<tr>
<td>(a^1)</td>
<td>(a^2)</td>
<td>(a^3)</td>
<td>(a^0)</td>
</tr>
<tr>
<td>(a^2)</td>
<td>(a^3)</td>
<td>(a^0)</td>
<td>(a^1)</td>
</tr>
<tr>
<td>(a^3)</td>
<td>(a^0)</td>
<td>(a^1)</td>
<td>(a^2)</td>
</tr>
</tbody>
</table>

Základním vztahem pro sestrojení tabulky je vztah \(a^4 = 1\). Potom například \(a^3 \cdot a^2 = a^5 = a^4 \cdot a^1 = 1 \cdot a^1 = a^1\).

Vidíme, že \(G \cong \mathbb{Z}_4\).

Předpokládejme nyní, že grupa \(G\) neobsahuje žádný prvek řádu 4. Pak \(G = \{1, a, b, c\}\) a každý z prvků \(a, b, c\) má řád 2.

Sestrojíme multiplikativní tabulku grupy \(G\):

<table>
<thead>
<tr>
<th>(1)</th>
<th>(a)</th>
<th>(b)</th>
<th>(c)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>(a)</td>
<td>(b)</td>
<td>(c)</td>
</tr>
<tr>
<td>(a)</td>
<td>(a)</td>
<td>(1)</td>
<td>(c)</td>
</tr>
<tr>
<td>(b)</td>
<td>(b)</td>
<td>(c)</td>
<td>(1)</td>
</tr>
<tr>
<td>(c)</td>
<td>(c)</td>
<td>(b)</td>
<td>(a)</td>
</tr>
</tbody>
</table>

Tabulku jsme sestrojili za využití vztahů \(a^2 = b^2 = c^2 = 1\) a faktu, že v žádném řádku (sloupci) tabulky se neopakuji prvky.

Sestrojíme multiplikativní tabulku grupy \(\mathbb{Z}_2 \times \mathbb{Z}_2\):

<table>
<thead>
<tr>
<th>((\bar{0}, \bar{0}))</th>
<th>((\bar{0}, \bar{1}))</th>
<th>((\bar{1}, \bar{0}))</th>
<th>((\bar{1}, \bar{1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>((0, 0))</td>
<td>((0, 0))</td>
<td>((0, 1))</td>
<td>((1, 0))</td>
</tr>
<tr>
<td>((0, 1))</td>
<td>((0, 1))</td>
<td>((0, 0))</td>
<td>((1, 0))</td>
</tr>
<tr>
<td>((1, 0))</td>
<td>((1, 0))</td>
<td>((1, 1))</td>
<td>((0, 0))</td>
</tr>
<tr>
<td>((1, 1))</td>
<td>((1, 1))</td>
<td>((1, 0))</td>
<td>((0, 1))</td>
</tr>
</tbody>
</table>
3.2. VĚTY FERMATOVA A EULEROVA

Lze snadno vidět, že zobrazení \(f : \mathbb{G} \to \mathbb{Z}_2 \times \mathbb{Z}_2 \) dané předpisem

\[
\begin{align*}
f(1) &= (\bar{0}, \bar{0}), \quad f(a) = (\bar{0}, \bar{1}), \quad f(b) = (\bar{1}, \bar{0}), \quad f(c) = (\bar{1}, \bar{1})
\end{align*}
\]

je izomorfismus. Takže \(\mathbb{G} \cong \mathbb{Z}_2 \times \mathbb{Z}_2 \).

Závěrem lze říci, že existují dvě grupy řádu 4, totož \(\mathbb{Z}_4 \) a \(\mathbb{Z}_2 \times \mathbb{Z}_2 \).

3.2 Věty Fermatova a Eulerova

V této části dokážeme pomocí Lagrangeovy věty dva klasické výsledky teorie čísel, Fermatovu a Eulerovu větu.

3.2.1. Věta (Fermat). Jestliže \(p \) je prvočíslo a \(a \) je celé číslo, pak \(a^p \equiv a \pmod{p} \).

Důkaz. Uvažme grupu \(\mathbb{Z}_p^* \). Ta má řád \(p - 1 \). Předpokládejme, že \(\bar{a} \neq \bar{0} \). Pak \(\bar{a} \in \mathbb{Z}_p^* \). Dle 3.1.11. platí:

\[
\begin{align*}
(\bar{a})^{p-1} &= \bar{1}, \\
(\bar{a})^p &= \bar{a} \cdot \bar{a}, \\
(\bar{a})^p &= \bar{a}, \\
(\bar{a})^p &= \bar{a}, \\
(\bar{a})^p &= \bar{a},
\end{align*}
\]

tj. \(a^p \equiv a \pmod{p} \).

Například, \(3^5 = 243 \equiv 3 \pmod{5} \),

\(10^{13} = 9999999999990 + 10 = 13 \cdot 769230769230 + 10 \equiv 10 \pmod{13} \).

V následující větě se vyskytuje Eulerova funkce \(\varphi \) (viz 2.2.3.).

3.2.2. Věta (Euler). Nechť \(r, s \) jsou celá čísla, \(r > 0 \). Jestliže \(\text{NSD}(r, s) = 1 \), pak \(s^{\varphi(r)} \equiv 1 \pmod{r} \).

Důkaz. Uvažme grupu \(U(\mathbb{Z}_r) \). Ta má řád \(\varphi(r) \) (viz 2.2.6.). Jelikož máme \(\text{NSD}(r, s) = 1 \), je \(\bar{s} \in U(\mathbb{Z}_r) \) (viz 2.2.5.). Dle 3.1.11. platí:

\[
\begin{align*}
(\bar{s})^{\varphi(r)} &= \bar{1}, \\
(\bar{s})^{\varphi(r)} &= \bar{s} \cdot \bar{s}, \\
(\bar{s})^{\varphi(r)} &= \bar{s}, \\
(\bar{s})^{\varphi(r)} &= \bar{s}, \\
(\bar{s})^{\varphi(r)} &= \bar{s},
\end{align*}
\]

tj. \(s^{\varphi(r)} \equiv 1 \pmod{r} \).

3.2.3. Příklad. Určete poslední dvojčíslí čísla \(3^{12345} \).

Řešení: Je třeba určit zbytek po dělení čísla \(3^{12345} \) číslem 100. \(\text{NSD}(100, 3) = 1 \), takže dle Eulerovy věty \(3^{\varphi(100)} \equiv 1 \pmod{100} \). Protože \(\varphi(100) = 40 \), máme \(3^{40} \equiv 1 \pmod{100} \). Ovšem \(12345 = 308 \cdot 40 + 25 \), takže

\[
3^{12345} = (3^{40})^{308} \cdot 3^{25} \equiv 1^{308} \cdot 3^{25} = 3^{25} \pmod{100}.
\]

Dále, \(3^2 = 9, 3^4 = 81, 3^8 = 81^2 = 6561 \equiv 61, 3^{16} = 61^2 = 3721 \equiv 21, 3^{24} = 3^{16} \cdot 3^8 = 21 \cdot 61 = 1281 \equiv 81, 3^{25} = 3^{24} \cdot 3 \equiv 81 \cdot 3 = 243 \equiv 43 \).

Zjistili jsme, že \(3^{12345} \equiv 43 \pmod{100} \). Tudíž, zbytek čísla \(3^{12345} \) po dělení číslem 100 je 43 a poslední dvojčíslí čísla \(3^{12345} \) je 43.
KAPITOLA 3. LAGRANGEOVA VĚTA A JEJÍ DŮSLEDKY
Kapitola 4

Cyklické grupy

4.1 Popis všech cyklických grup

Z jistého úhlu pohledu lze říci, že cyklické grupy jsou nejjednodušší mezi všemi grupami. Jsou to totiž grupy generované jedním prvkem.

4.1.1. Definice. Nechť G je grupa. Jestliže existuje $a \in G$ tak, že $G = \langle a \rangle$, pak se grupa G nazývá cyklická. Prvek a nazýváme generátor cyklické grupy G.

Uvědomme si, že pro cyklickou grupu $G = \langle a \rangle$ máme vyjádření $G = \{a^n | n \in \mathbb{Z}\}$ (viz 1.4.14.).

4.1.2. Příklad. Nechť n je kladné celé číslo. Nechť G je množina všech n-tých komplexních odmocnin z jedné, tedy

$$G = \{x \in \mathbb{C} | x^n = 1\}.$$

Snadno se přesvědčíme, že G je podgrupa grupy \mathbb{C}^\times.

Je $1 \in G$, neboť $1^n = 1$.

Nechť $x \in G$. Chceme: $x^{-1} \in G$. Je $(x^{-1})^n = (x^n)^{-1} = 1^{-1} = 1$, takže $x^{-1} \in G$.

Nechť $x, y \in G$. Chceme: $x \cdot y \in G$. Je $(x \cdot y)^n = x^n \cdot y^n = 1 \cdot 1 = 1$, takže $x \cdot y \in G$.

Je dobře známo, že počet n-tých komplexních odmocnin z jedné je roven n a že to jsou následující čísla:

$$\varepsilon_0 = \cos 0 \cdot \frac{2\pi}{n} + i \sin 0 \cdot \frac{2\pi}{n} = \cos 0 + i \sin 0 = 1$$

$$\varepsilon_1 = \cos 1 \cdot \frac{2\pi}{n} + i \sin 1 \cdot \frac{2\pi}{n} = \cos \frac{2\pi}{n} + i \sin \frac{2\pi}{n}$$
\[\varepsilon_2 = \cos 2 \cdot \frac{2\pi}{n} + i \sin 2 \cdot \frac{2\pi}{n}\]
\[\varepsilon_3 = \cos 3 \cdot \frac{2\pi}{n} + i \sin 3 \cdot \frac{2\pi}{n}\]
\[\vdots\]
\[\varepsilon_{n-1} = \cos(n-1) \cdot \frac{2\pi}{n} + i \sin(n-1) \cdot \frac{2\pi}{n}\]
Tudíž \(G = \{\varepsilon_0, \varepsilon_1, \ldots, \varepsilon_{n-1}\}\).
Dobře je také známa Moivrova věta: Pro každé celé číslo \(k\) platí
\[(\cos \alpha + i \sin \alpha)^k = \cos k\alpha + i \sin k\alpha.\]
Speciálně, pro každé celé číslo \(k\), \(0 \leq k \leq n-1\), máme
\[\varepsilon_1^k = (\cos \frac{2\pi}{n} + i \sin \frac{2\pi}{n})^k = \cos k \cdot \frac{2\pi}{n} + i \sin k \cdot \frac{2\pi}{n} = \varepsilon_k.\]
Závěrem lze konstatovat, že \(G = \langle \varepsilon_1 \rangle\) a grupa \(G\) je cyklická.

4.1.3. Příklad. V grupě \(Z\) platí: \(\langle 1 \rangle = \{n \cdot 1 | n \in Z\} = \{n | n \in Z\} = Z\). Tedy \(Z\) je nekonečná cyklická grupa.
Nechť \(n\) je kladné celé číslo. V grupě \(Z_n\) platí: \(\overline{1} + \overline{1} = \overline{2}, \overline{1} + \overline{1} + \overline{1} = \overline{3}, \overline{1} + \overline{1} + \overline{1} + \overline{1} = 4, \ldots, \overline{1} + \overline{1} + \overline{1} + \cdots + \overline{1} = n-\overline{1}, \overline{1} + \overline{1} + \overline{1} + \cdots + \overline{1} = n = 0.\) Tedy \(\langle \overline{1} \rangle = Z_n\) a \(Z_n\) je konečná cyklická grupa řádu \(n\).

V následující větě dokážeme, že příklad 4.1.3. uvádí všechny cyklické grupy, které existují (až na izomorfismus).

4.1.4. Věta.
Jestliže \(G\) je nekonečná cyklická grupa, pak \(G \cong Z\).
Jestliže \(G\) je konečná cyklická grupa řádu \(n\), pak \(G \cong Z_n\).

Důkaz.
1. Předpokládejme, že \(G\) je nekonečná cyklická grupa.
Nechť \(a \in G\), \(G = \langle a \rangle\). Pro celé číslo \(n\) položíme
\[f(n) = a^n.\]
Definovali jsme právě zobrazení \(f : Z \to G\). Dokážeme, že \(f\) je izomorfismus.
4.1. POPIS VŠECH CYKLIČKÝCH GRUP

f je bijekce:
Protože $G = \{a^n \mid n \in \mathbb{Z}\}$, je jasné, že f je surjekce. Zbývá dokázat, že f je injekce. Nechť k, l jsou celá čísla, $f(k) = f(l)$. Chceme: $k = l$. Víme, že $a^k = a^l$. Pro důkaz sporem předpokládejme, že $k \neq l$. Nechť například $k < l$. Pak $a^k \cdot a^{-k} = a^l \cdot a^{-k}, a^0 = a^{l-k}, 1 = a^{l-k}$. Ovšem $l - k$ je přirozené číslo. Tudíž prvek a má konečný řád a grupa $G = \langle a \rangle$ je konečná (viz 1.4.18.). Dostali jsme spor. Nutně tedy $k = l$.

f je homomorfismus:
Buďte $k, l \in \mathbb{Z}$. Pak $f(k + l) = a^{k+l} = a^k \cdot a^l = f(k) \cdot f(l)$.

2. Předpokládejme, že G je konečná cyklická grupa řádu n.
Nechť $a \in G, G = \langle a \rangle$. Prvek a má konečný řád (viz 1.2.7.), který je roven řádu grupy $\langle a \rangle$ (viz 1.4.18.). Těžko, prvek a má řád n.
Nechť $k, l \in \mathbb{Z}, k \equiv l \mod n$. Pak $n/l - k$ a existuje celé číslo $q, l - k = q \cdot n$.
Potom $l = qn + k$, což dává

$$a^l = a^{qn+k} = a^{qn} \cdot a^k = (a^n)^q \cdot a^k = 1^q \cdot a^k = 1 \cdot a^k = a^k.$$

Budeme definovat zobrazení $f : \mathbb{Z}_n \to G$ takto:

$$f([k]) = a^k$$

pro libovolné $k \in \mathbb{Z}$. Nejdříve prověříme, že zobrazení f je definováno korektně: Nechť $k, l \in \mathbb{Z}, [k] = [l]$. Je třeba, aby $a^k = a^l$. Avšak $[k] = [l]$ znamená $k \equiv l \mod n$ a výše provedený výpočet ukazuje, že $a^k = a^l$.
Nyní dokážeme, že zobrazení f je izomorfismus.

f je bijekce:
Protože $G = \{a^n \mid n \in \mathbb{Z}\}$, je jasné, že f je surjekce. Zbývá dokázat, že f je injekce. Nechť k, l jsou celá čísla, $f([k]) = f([l])$. Chceme: $[k] = [l]$. Víme, že $a^k = a^l$. Pak $a^k \cdot a^{-k} = a^l \cdot a^{-k}, a^0 = a^{l-k}, 1 = a^{l-k}$. Číslo $l - k$ vydělíme se zbytkem číslem n. Pak $l - k = q \cdot n + r$ pro vhodná celá čísla $q, r, 0 \leq r < n$. Nyní

$$1 = a^{l-k} = a^{qn+r} = (a^n)^q \cdot a^r = 1^q \cdot a^r = 1 \cdot a^r = a^r.$$

Protože $0 \leq r < n$ a n je řád prvku a, musí být $r = 0$. Pak ovšem $l - k = q \cdot n, n/l - k, k \equiv l \mod n, [k] = [l]$.
f je homomorfismus:
Buďte \(k, l \in \mathbb{Z} \). Pak
\[
f(k + l) = f(k + l) = a^{k+l} = a^k \cdot a^l = f(k) \cdot f(l).
\]

4.1.5. Tvrzení. Nechť \(G \) je konečná grupa řádu \(n \). Jestliže \(G \) má nějaký prvek řádu \(n \), pak \(G \cong \mathbb{Z}_n \).

Důkaz. Nechť \(a \in G \), \(a \) má řád \(n \). Podle 1.4.18. podgrupa \(\langle a \rangle \) má řád \(n \). Takže \(\langle a \rangle \subseteq G \), \(\text{card}(\langle a \rangle) = n \), \(\text{card}(G) = n \). Proto \(\langle a \rangle = G \). Ukázali jsme, že grupa \(G \) je cyklická. Protože \(G \) je konečná cyklická grupa řádu \(n \), je \(G \cong \mathbb{Z}_n \) dle věty 4.1.4.

4.1.6. Tvrzení. Nechť \(G \) je konečná grupa řádu \(p \), kde \(p \) je prvočíslo. Pak \(G \cong \mathbb{Z}_p \).

Důkaz. Nechť \(a \in G \), \(a \neq 1 \). Řád prvku \(a \) označme symbolem \(k \). Podle 3.1.10. víme, že \(k \) dělí \(p \). Takže \(k = 1 \) nebo \(k = p \). Případ \(k = 1 \) nenastává (platilo by totiž \(a^k = 1 \), \(a = 1 \)), takže \(k = p \). Grupa \(G \) má prvek řádu \(p \). Podle 4.1.5. pak \(G \cong \mathbb{Z}_p \).

4.1.7. Příklad. Najdeme všechny generátory grupy \(\mathbb{Z} \). Nechť \(a \in \mathbb{Z} \), \(\langle a \rangle = \mathbb{Z} \). Připomeňme si, že
\[
\langle a \rangle = \{ n \cdot a \mid n \in \mathbb{Z} \}.
\]
Protože \(1 \in \langle a \rangle \), existuje celé číslo \(n \) tak, že \(na = 1 \). Tdůz \(n = a = 1 \) nebo \(n = a = -1 \). Ověříme ještě, že \(a = 1 \) a \(a = -1 \) jsou vskutku generátory grupy \(\mathbb{Z} \). Platí:
\[
\langle 1 \rangle = \{ n \cdot 1 \mid n \in \mathbb{Z} \} = \{ n \mid n \in \mathbb{Z} \} = \mathbb{Z}
\]
\[
\langle -1 \rangle = \{ n \cdot (-1) \mid n \in \mathbb{Z} \} = \{ -n \mid n \in \mathbb{Z} \} = \mathbb{Z}.
\]
Závěrem můžeme konstatovat, že grupa \(\mathbb{Z} \) má přesně dva generátory, totiž čísla 1, -1.

4.1.8. Příklad. Najdeme všechny generátory grupy \(\mathbb{Z}_4 \). Zřejmě platí:
\[
\langle 0 \rangle = \{ 0 \}, \langle 1 \rangle = \mathbb{Z}_4, \langle 2 \rangle = \{ 0, 2 \}, \langle 3 \rangle = \mathbb{Z}_4
\]
(v posledním případě si povšimneme vztahů \(3 + 3 = 6 = 2, 3 + 3 + 3 = 9 = 1 \),
4.1. POPIS VŠECH CYKLICKÝCH GRUP

\[3 + 3 + 3 + 3 = 12 = 0 \].

Můžeme konstatovat, že grupa \(\mathbb{Z}_4 \) má přesně dva generátory, totiž \(1 \) a \(3 \).

4.1.9. Příklad.

Najdeme všechny generátory grupy \(\mathbb{Z}_5 \). Počítejme:

\[
\begin{align*}
1 + 1 &= 2, \\
1 + 1 + 1 &= 3, \\
1 + 1 + 1 + 1 &= 4, \\
1 + 1 + 1 + 1 + 1 &= 5 = 0 \\
2 + 2 &= 4, \\
2 + 2 + 2 &= 6 = 1, \\
2 + 2 + 2 + 2 &= 8 = 3, \\
2 + 2 + 2 + 2 + 2 &= 10 = 0 \\
3 + 3 &= 6 = 1, \\
3 + 3 + 3 &= 9 = 4, \\
3 + 3 + 3 + 3 &= 12 = 2, \\
3 + 3 + 3 + 3 + 3 &= 15 = 0 \\
4 + 4 &= 8 = 3, \\
4 + 4 + 4 &= 12 = 2, \\
4 + 4 + 4 + 4 &= 16 = 1, \\
4 + 4 + 4 + 4 + 4 &= 20 = 0.
\end{align*}
\]

Můžeme konstatovat, že grupa \(\mathbb{Z}_5 \) má přesně 4 generátory, totiž \(1, 2, 3, 4 \).

Příklad 4.1.7. nám ukázal, že nekonečná cyklická grupa má 2 generátory. V případě konečných cyklických grup je situace jiná. Konečná cyklická grupa může mít 2 generátory (viz 4.1.8.), může mít ale také 4 generátory (viz 4.1.9.). Jak je to tedy s počtem generátorů konečných cyklických grup?

4.1.10. Tvrzení.

Nechť \(G = \langle a \rangle \) je konečná cyklická grupa řádu \(n \). Pro každé celé číslo \(k \) platí:

\[\langle a^k \rangle = G \iff \text{NSD}(k, n) = 1. \]

Důkaz.

Z 1.2.7. a 1.4.18. plyne, že prvek \(a \) má řád \(n \).

1. Předpokládejme, že \(\langle a^k \rangle = G \). Protože \(a \in G \), je \(a \in \langle a^k \rangle = \{ (a^k)^u \mid u \in \mathbb{Z} \} \). Existuje tedy celé číslo \(u \) s vlastností \(a = (a^k)^u = a^{ku} \). Pak \(a^{ku-1} = 1 \) a tedy \(n/ku - 1 \) (viz 1.2.13.). Existuje tedy celé číslo \(v \) s vlastností \(ku - 1 = nv \). Potom \(1 = ku - nv \). Buď \(d \) celé číslo, \(d/n a d/k \). Jelikož \(1 = ku - nv \), dostáváme \(d/1 \), čili \(d = 1 \) nebo \(d = -1 \). Z toho již vyplývá, že \(\text{NSD}(k, n) = 1 \).

2. Předpokládejme, že \(\text{NSD}(k, n) = 1 \). Dle Bezoutovy rovnosti (viz 2.2.4.) existují celá čísla \(u, v \) taková, že

\[1 = uk + vn. \]

Pak

\[a = a^1 = a^{uk+vn} = (a^k)^u \cdot (a^n)^v = (a^k)^u \cdot 1^v = (a^k)^u \cdot 1 = (a^k)^u \]

(použili jsme fakt, že prvek \(a \) má řád \(n \)).

Tudíž \(a \in \langle a^k \rangle \). Pak ovšem \(\langle a \rangle \subseteq \langle a^k \rangle \) a vzhledem ke skutečnosti, že \(\langle a \rangle = G \), dostáváme \(G = \langle a^k \rangle \).
KAPITOLA 4. CYKLICKÉ GRUPY

4.1.11. Tvrzení. Nechť G je konečná cyklická grupa řádu n. Pak počet generátorů grupy G je roven $\varphi(n)$, kde φ je Eulerova funkce.

Důkaz. Protože grupa G je cyklická, existuje prvek $a \in G$ řádu n s vlastností

$$G = \{a^0, a^1, \ldots, a^{n-1}\}.$$

Podle tvrzení 4.1.10. pro každé $k \in \{0, 1, \ldots, n-1\}$ platí:

$$\langle a^k \rangle = G \iff \text{NSD}(k, n) = 1.$$

Tudíž počet generátorů grupy G je roven číslu

$$\text{card}(\{k \in \mathbb{Z} | 0 \leq k < n, \text{NSD}(k, n) = 1\}),$$

což je ovšem hodnota $\varphi(n)$ (viz definici 2.2.3.).

Například, cyklická grupa \mathbb{Z}_{100} má celkem $\varphi(100) = 40$ generátorů a cyklická grupa \mathbb{Z}_p, kde p je prvočíslo, má celkem $\varphi(p) = p-1$ generátorů.

Důkaz. Vzhledem k 4.1.11. stačí ukázat, že pro každý prvek $a \in G$ platí: prvek a má řád n právě tehdy, když a je generátor grupy G.

1. Předpokládejme, že prvek a má řád n. Pak $\langle a \rangle$ má řád n (viz 1.4.18.). Jelikož $\langle a \rangle \subseteq G$ a grupy $\langle a \rangle$ a G mají stejný konečný řád, je $\langle a \rangle = G$, čili a je generátor grupy G.

2. Předpokládejme, že a je generátor grupy G. Nechť prvek a má řád k. Pak $\langle a \rangle$ má řád k. Jelikož a je generátor grupy G, je $\langle a \rangle = G$ a tedy $k = n$.

4.2 Podgrupy cyklických grup

Pokusme se nejdříve nalézt všechny podgrupy nekonečné cyklické grupy, tedy grupy \mathbb{Z}. Buď d nezáporné celé číslo. Samozřejmě,

$$\langle d \rangle = \{nd | n \in \mathbb{Z}\}$$
jsou (cyklické) podgrupy grupy \(\mathbb{Z} \). Následující tvrzení ukazuje, že grupa \(\mathbb{Z} \) už žádné další podgrupy nemá.

4.2.1. Tvrzení

Buď \(H \) podgrupa grupy \(\mathbb{Z} \). Pak existsuje nezáporné celé číslo \(d \) tak, že \(H = \langle d \rangle \).

Důkaz. Jestliže \(H = \{0\} \), pak položíme \(d = 0 \). Nechť \(H \neq \{0\} \). Pak existuje \(a \in H, a \neq 0 \). Protože \(H \) je podgrupa, je \(-a \in H \). Jelikož \(a \neq 0 \), je jedno z čísel \(a, -a \) kladné a množina \(H^+ = \{ x \in H \mid x > 0 \} \) není prázdná. Buď \(d \) nejmenší prvek množiny \(H^+ \). Ukážeme, že \(\langle d \rangle = H \).

Protože \(d \in H^+ \subseteq H \), je \(\langle d \rangle \subseteq H \).

Nechť \(c \in H \). Číslo \(c \) vydělíme se zbytkem číslem \(d \). Existují celá čísla \(q, r \) taková, že \(c = qd + r \), kde \(0 \leq r < d \). Předpokládejme, že \(r \neq 0 \). Je \(c \in H \), \(d \in H \). Protože \(H \) je podgrupa, máme \((-q) \cdot d \in H \), \(c + (-q) \cdot d \in H \). Ovšem \(c + (-q) \cdot d = r \), takže \(r \in H \). Protože \(r > 0 \), je \(r \in H^+ \). Avšak \(r < d \), což je ve sporu s tím, že \(d \) je nejmenší prvek množiny \(H^+ \). Dokázali jsme tedy, že \(r = 0 \). Pak \(c = qd \), \(c \in \langle d \rangle \). Prvek \(c \in H \) jsme zvolili libovolně, takže \(H \subseteq \langle d \rangle \).

Pokusme se nyní nalézt všechny podgrupy konečné cyklické grupy řádu \(n \).

4.2.2. Tvrzení

Nechť \(G \) je konečná cyklická grupa řádu \(n \) s generátorem \(a \). Nechť \(d, e \) jsou kladná celá čísla splňující \(de = n \). Pak podgrupa \(\langle a^e \rangle \) má řád \(d \) a platí vztah

\[
\langle a^e \rangle = \{ a^{ie} \mid i \in \mathbb{Z}, \ 0 \leq i < d \} = \{ 1, a^e, a^{2e}, \ldots, a^{(d-1)e} \}.
\]

Důkaz. Víme, že prvek \(a \) má řád \(n \), \(G = \{ 1, a, a^2, \ldots, a^{n-1} \} \), \(\langle a^e \rangle = \{ (a^e)^j \mid j \in \mathbb{Z} \} = \{ a^{je} \mid j \in \mathbb{Z} \} \).

\(\{ a^{ie} \mid i \in \mathbb{Z}, \ 0 \leq i < d \} \subseteq \langle a^e \rangle \): To je zřejmé.

\(\langle a^e \rangle \subseteq \{ a^{ie} \mid i \in \mathbb{Z}, \ 0 \leq i < d \} \): Zvolme \(j \in \mathbb{Z} \). Je třeba ukázat, že existuje \(i \in \mathbb{Z}, \ 0 \leq i < d \), splňující \(a^{je} = a^{ie} \). Vyděleme číslo \(j \) se zbytkem číslem \(d \). Existují celá čísla \(q, i, 0 \leq i < d, j = qd + i \). Pak \(je = qde + ie = qn + ie \), \(a^{je} = a^{(qd+i)e} = (a^n)^q \cdot a^{ie} = 1^q \cdot a^{ie} = 1 \cdot a^{ie} = a^{ie} \).
Zbývá ještě dokázat, že \(\langle a^e \rangle \) má řád \(d \). K tomu stačí pouze dokázat, že pro \(i \in \mathbb{Z}, \ 0 \leq i < d \), je \(0 \leq ie < n \). Z \(0 \leq i < d \) dostáváme \(0 \cdot e \leq i \cdot e < d \cdot e \), tedy \(0 \leq ie < n \).

4.2.3. Tvrzení. Nechť \(G \) je konečná cyklická grupa řádu \(n \) s generátorem \(a \). Jestliže \(H \) je podgrupa grupy \(G \), pak existují kladná celá čísla \(d \), \(e \) splňující \(de = n \), přičemž \(H = \langle a^e \rangle \) a \(H \) má řád \(d \).

Důkaz. Prvek \(a \) má řád \(n \) a \(G = \{1, a, a^2, \ldots, a^{n-1}\} \). Jestliže \(H = \{1\} \), pak položíme \(d = 1 \) a \(e = n \). Zřejmě \(H \) má řád \(d \), \(\langle a^e \rangle = \langle a^n \rangle = \langle 1 \rangle = \{1\} = H \). Nechť nyní \(H \neq \{1\} \). Položme \(M = \{ f \in \mathbb{Z} \mid 0 < f, \ a^f \in H \} \). Množina \(M \) je neprázdná, protože \(H \neq \{1\} \). Nejmenší prvek \(a \) množiny \(M \) označme \(e \). Zřejmě \(e \) je kladné celé číslo. Číslo \(n \) vydělíme se zbytkem číslem \(e \). Existují celá čísla \(r, 0 \leq r < e, n = de + r \). Pak \(r = n + (-d)e \),

\[
a^r = a^{n+(-d)e} = a^n \cdot a^{(-d)e} = 1 \cdot (a^e)^{-d} = (a^e)^{-d} \in H
\]

(využili jsme fakt, že \(H \) je podgrupa a \(a^e \in H \)).

Kdyby bylo \(r > 0 \), bylo by \(r \in M \), což by byl spor, protože \(r < e \). Nutně tedy \(r = 0, n = de \). Zřejmě \(d \) je kladné.

Dokážeme nyní, že \(H = \langle a^e \rangle \).

\(\langle a^e \rangle \subseteq H \): Tato inkluzi plyne ihned z toho, že \(a^e \in H \).

\(H \subseteq \langle a^e \rangle \): Buď \(h \in H \). Chceme: \(h \in \langle a^e \rangle \). Prvek \(h \) lze zapsat ve tvaru \(h = a^k \), kde \(k \in \mathbb{Z} \). Vydělíme číslo \(k \) se zbytkem číslem \(e \). Existují celá čísla \(u, v, 0 \leq v < e, k = eu + v \). Pak \(v = k + (-u)e \),

\[
a^v = a^{k+(-u)e} = a^k \cdot (a^e)^{-u} = h \cdot (e^e)^{-u}.
\]

Využijeme toho, že \(H \) je podgrupa. Protože \(a^e \in H \), je \((a^e)^{-u} \in H \). Ovšem těž \(h \in H \), takže \(a^v = h \cdot (a^e)^{-u} \in H \). Kdyby platilo \(0 < v \), bylo by \(v \in M \). To však není možné, protože \(v < e \). Nutně tedy \(v = 0 \). Pak \(k = eu, h = a^k = a^{eu} = (a^e)^u \in \langle a^e \rangle \). Z tvrzení 4.2.2. plyne, že \(\langle a^e \rangle \) má řád \(d \). Tudíž \(H \) má řád \(d \).

Ve tvrzeních 4.2.2. a 4.2.3. se nám podařilo přesně popsat všechny podgrupy konečně cyklické grupy \(G \) řádu \(n \).

4.2.4. Tvrzení. Nechť \(G \) je konečná cyklická grupa řádu \(n \) s generátorem \(a \). Nechť \(d \) je kladné celé číslo, \(d/n \). Buď \(e \) kladné celé číslo, \(n = de \). Pak grupa \(G \) má právě jednu podgrupu řádu \(d \), totiž podgrupu

\[
\langle a^e \rangle = \{1, a^e, a^{2e}, \ldots, a^{(d-1)e}\}.
\]
Důkaz. Ve 4.2.2. jsme dokázali, že \(\langle a^e \rangle \) má řád \(d \) a platí vztah
\[
\langle a^e \rangle = \{1, a^e, a^{2e}, \ldots, a^{(d-1)e}\}.
\]
Buď \(H \) podgrupa grupy \(G \), \(H \) má řád \(d \). Chceme: \(H = \langle a^e \rangle \). Ze 4.2.3. plyne: existují kladná celá čísla \(u, v \) splňující \(uv = n \), přičemž \(H = \langle a^v \rangle \) a \(H \) má řád \(u \). Máme \(de = uv \). Ovšem \(u = d \), z čehož plyne \(v = e \) a \(H = \langle a^e \rangle \).

4.2.5. Tvrzení. Každá podgrupa cyklické grupy je cyklická.

Důkaz. Tvrzení vyplývá z 4.2.1. a 4.2.3.

Nyní pomocí poznatků o konečných cyklických grupách dokážeme větu týkající se Eulerovy funkce \(\varphi \).

4.2.6. Věta. Jestliže \(n \) je kladné celé číslo, pak
\[
\sum_{d|n} \varphi(d) = n,
\]
kde součet se bere přes všechny kladné celočíselné dělitele čísla \(n \).

Důkaz. Buď \(G \) konečná cyklická grupa řádu \(n \) s generátorem \(a \). Pro kladné celé číslo \(d \) označíme symbolem \(\psi(d) \) počet všech prvků grupy \(G \), které mají řád \(d \). Protože každý prvek grupy \(G \) má řád, jenž je kladným celočíselným dělilem řádu grupy \(G \) (tj. čísla \(n \)), platí
\[
\sum_{d|n} \psi(d) = n.
\]
Stačí tedy ukázat, že pro každý kladný celočíselný dělitel \(d \) čísla \(n \) je \(\psi(d) = \varphi(d) \).

Nechť \(d \) je kladné celé číslo, \(d/n \). Buď \(b \in G \), \(b \) má řád \(d \) a dle 4.2.4. je \(\langle b \rangle = \langle a^e \rangle \) (\(e \) je kladné celé číslo splňující \(n = de \)). Protože \(b \in \langle b \rangle \), je \(b \in \langle a^e \rangle \). Ukázali jsme, že každý prvek řádu \(d \) patří do \(\langle a^e \rangle \). Je tedy \(\psi(d) \) rovno počtu všech prvků grupy \(\langle a^e \rangle \), které mají řád \(d \). Jelikož \(\langle a^e \rangle \) je konečná cyklická grupa řádu \(d \), je počet prvků grupy \(\langle a^e \rangle \) řádu \(d \) roven číslu \(\varphi(d) \) (viz 4.1.12.). Tudíž \(\psi(d) = \varphi(d) \).
Nechť T je těleso. Připomeňme, že symbol T^\times značí multiplikativní grupu nenulových prvků tělesa T. Zabývejme se nyní otázkou, jak vypadají konečné podgrupy grupy T^\times. Speciálně se tedy budeme zabývat otázkou, jak vypadá grupa T^\times pro konečné těleso T.

4.2.7. Příklad. Uvažme těleso \mathbb{Z}_7. Určíme řády prvků grupy \mathbb{Z}_7^\times. Počítejme:

\[2^2 = 4, \quad 2^3 = 8 = 1\]
\[3^2 = 9 = 2, \quad 3^3 = 6, \quad 3^4 = 18 = 4, \quad 3^5 = 12 = 5, \quad 3^6 = 15 = 1\]
\[4^2 = 16 = 2, \quad 4^3 = 8 = 1\]
\[5^2 = 25 = 4, \quad 5^3 = 20 = 6, \quad 5^4 = 30 = 2, \quad 5^5 = 10 = 3, \quad 5^6 = 15 = 1\]
\[6^2 = 36 = 1.\]

Zjistili jsme, že 1 má řád 1, 2 má řád 3, 3 má řád 6, 4 má řád 3, 5 má řád 6, 6 má řád 2. Všimněme si, že $\langle 3 \rangle = \mathbb{Z}_7^\times$, $\langle 5 \rangle = \mathbb{Z}_7^\times$. Tedy: grupa \mathbb{Z}_7^\times je cyklická. Vidíme též, že grupa \mathbb{Z}_7^\times má dva generátory (jsou to prvky 3 a 5). To je samozřejmě v souladu s tvrzením 4.1.11., dle něhož cyklická grupa řádu 6 má $\varphi(6) = 2$ generátory.

Jak ukazuje následující věta, zjištění z příkladu 4.2.7. není náhodné. Jestliže T je konečné těleso, pak grupa T^\times je cyklická.

4.2.8. Věta. Nechť T je těleso. Platí:

1. Jestliže G je konečná podgrupa grupy T^\times, pak G je cyklická.
2. Jestliže T je konečné, pak grupa T^\times je cyklická.

Důkaz. Konstatujeme, že druhá část věty ihned plyne z části první: jestliže těleso T je konečné, pak jisté T^\times je konečná grupa. Dokážeme tedy část první. Buď G konečná podgrupa grupy T^\times. Buď n řád grupy G. Buď d kladné celé číslo, d/n. Symbolem $\psi(d)$ označíme počet všech prvků grupy G, které mají řád d. Ukážeme: Jestliže $\psi(d) > 0$, pak $\psi(d) = \varphi(d)$.

Nechť $\psi(d) > 0$. Nechť $a \in G$, a má řád d. Položme $H = \langle a \rangle$. Pak H je cyklická grupa řádu d. Počet prvků grupy H, které mají řád d, je roven $\varphi(d)$ (viz 4.1.12.). K důkazu rovnosti $\psi(d) = \varphi(d)$ stačí ukázat, že v $G - H$ neleží žádný prvek řádu d. Předpokládejme opak. Buď $b \in G - H$, b má řád d. Uvažme polynom $p(x) = x^d - 1$. Polynom p má stupeň d, takže p má nejvýše d kořenů. Protože grupa H má řád d, je $h^d = 1$ pro všechna $h \in H$ (viz 3.1.11.). Pro všechna $h \in H$ tedy platí: $h^d - 1 = 0$, $p(h) = 0$, h je kořen.
polynomu p. Dále pak b má řád d, takže $b^d = 1$, $b^d - 1 = 0$, $p(b) = 0$, b je kořen polynomu p. Vidíme, že polynom p má aspoň $d+1$ kořenů. To je spor. Předpokládejme, že pro nějaké d je $\psi(d) = 0$. Pak

$$\sum_{d/n} \psi(d) < \sum_{d/n} \varphi(d).$$

Ovšem $\sum_{d/n} \psi(d) = n$ (to je zřejmé) a $\sum_{d/n} \varphi(d) = n$ (věta 4.2.6.), což dává $n < n$, spor. Nutně tedy pro každé d je $\psi(d) > 0$ a tudíž $\psi(d) = \varphi(d)$.

Speciálně, $\psi(n) = \varphi(n) > 0$. Vidíme, že grupa G obsahuje prvky řádu n. Tudíž, dle 4.1.5., $G \cong \mathbb{Z}_n$, G je cyklická.

Pro nekonečné těleso T grupa T^\times nemusí být cyklická. Například, grupa \mathbb{R}^\times má nespočetně mnoho prvků. Pro každé $a \in \mathbb{R}^\times$ je $\langle a \rangle = \{a^n \mid n \in \mathbb{Z}\}$, takže grupa $\langle a \rangle$ je spočetná a situace $\langle a \rangle = \mathbb{R}^\times$ nemůže nastat, tj. grupa \mathbb{R}^\times není cyklická.

4.2.9. Tvrzení. Nechť T je nekonečné těleso, ve kterém $1+1 \neq 0$. Pak grupa T^\times není cyklická.

Důkaz. Budeme postupovat sporem. Předpokládejme, že grupa T^\times je cyklická. Buď $a \in T^\times$, $\langle a \rangle = T^\times$. Pak

$$T^\times = \{a^n \mid n \in \mathbb{Z}\}.$$

Je $-a \in T^\times$ (jinak by bylo $-a = 0$, což by dalo $0 = a$) a tedy $-a = a^n$ pro nějaké celé číslo n. Z toho plyne $a^n \cdot a^n = (-a) \cdot (-a)$, $a^{2n} = a^2$, $a^{2n-2} = 1$. Jsou tři možnosti, avšak každá dává spor.

(I) $2n - 2 > 0$

(II) $2n - 2 = 0$

(III) $2n - 2 < 0$.

ad (I): Prvek a má konečný řád, grupa $\langle a \rangle = T^\times$ je konečná, spor.

ad (II): $n = 1, -a = a, 0 = a + a, 0 = a \cdot (1+1), 0 = 1 + 1$, spor.

ad (III): $a^{2n-2} = 1$, $(a^{2n-2})^{-1} = 1^{-1}$, $a^{-2n+2} = 1$. Číslo $-2n + 2$ je přirozené, takže prvek a má konečný řád, grupa $\langle a \rangle = T^\times$ je konečná, spor.
Kapitola 5

Akce grupy na množině a Sylowova věta

5.1 Akce grupy na množině

5.1.1. Definice. Nechť \(X \) je množina a \(G \) je grupa. Nechť \(\circ : G \times X \rightarrow X \). Pro libovolné \((g, x) \in G \times X \) budeme místo \(\circ ((g, x)) \) psát \(g \circ x \) nebo jen \(gx \). Zobrazení \(\circ \) se nazývá akce grupy \(G \) na množině \(X \), pokud platí:

1. \(1x = x \) pro všechna \(x \in X \)
2. \(g(hx) = (gh)x \) pro všechna \(g, h \in G, x \in X \).

Uvedeme nyní dva příklady akcí grupy na množině, které později využijeme (v důkazu Sylowovy věty, v důkazu věty o centru \(p \)-grupy).

5.1.2. Příklad. Nechť \(G \) je grupa, \(n \) je kladné celé číslo. Položme

\[
X = \{ A \subseteq G \mid \text{card}(A) = n \}.
\]

Budeme definovat akci grupy \(G \) na množině \(X \):

Pro \(g \in G, A \in X \) položíme

\[
gA = \{ ga \mid a \in A \}.
\]

Prověříme, že jsme vskutku definovali akci grupy \(G \) na \(X \).

1. Nechť \(A \in X, A = \{ a_1, \ldots, a_n \} \). Pak \(gA = \{ ga_1, \ldots, ga_n \} \). Ze zákona o krácení ihned plyne, že prvky \(ga_1, \ldots, ga_n \) jsou navzájem různé, a tedy \(\text{card}(gA) = \text{card}(A) = n, gA \in X \).
84 KAPITOLA 5. AKCE GRUPY NA MNOŽINĚ A SYLOWOVA VĚTA

2. Nechť $A \in X$. Pak
\[
1A = \{1 \cdot a \mid a \in A\} = \{a \mid a \in A\} = A.
\]

3. Nechť $A \in X$, $g, h \in G$. Buď $A = \{a_1, \ldots, a_n\}$. Pak
\[
g(hA) = g\{ha_1, \ldots, ha_n\} = \{g(ha_1), \ldots, g(ha_n)\} = \{(gh)a_1, \ldots, (gh)a_n\} = (gh)A.
\]

5.1.3. Příklad. Nechť G je grupa. Definujeme akci grupy G na množině G takto:
Pro $g \in G$, $x \in G$,
\[
g \circ x = gxg^{-1}.
\]
Prověříme, že jsme všetku definovali akci grupy G na G.

1. Buď $x \in G$. Chceme: $1 \circ x = x$.
 Je $1 \circ x = 1 \cdot x \cdot 1^{-1} = 1 \cdot x \cdot 1 = x$.

2. Buďte $g, h \in G$, $x \in G$. Chceme: $g \circ (h \circ x) = (gh) \circ x$.
 Je $g \circ (h \circ x) = g \circ (hxh^{-1}) = g(hxh^{-1})g^{-1} = (gh)x(h^{-1}g^{-1}) = (gh)x(gh)^{-1} = (gh) \circ x$.

5.1.4. Definice. Nechť je dána akce grupy G na množině X. Nechť $x \in X$. Orbita prvku x je množina
\[
O(x) = \{gx \mid g \in G\} \subseteq X.
\]

5.1.5. Věta. Nechť je dána akce grupy G na množině X. Pak systém množin
\[
\{O(x) \mid x \in X\}
\]
je rozklad množiny X.
5.1. AKCE GRUPY NA MNOŽINĚ

DŮKAZ. Je třeba ukázat následující:
(I) Pro každé $x \in X$ je $O(x) \neq \emptyset$.
(II) $\bigcup_{x \in X} O(x) = X$
(III) Nechť $x, y \in X$, $O(x) \cap O(y) \neq \emptyset$. Chceme: $O(x) = O(y)$.

ad (I): Všimněme si, že $x \in O(x)$. To plyne z rovnosti $1x = x$.

ad (II): Je zřejmé, že $\bigcup_{x \in X} O(x) \subseteq X$. Buď $u \in X$. Pak $u \in O(u) \subseteq \bigcup_{x \in X} O(x)$. Jelikož prvek u byl zvolen libovolně, máme $X \subseteq \bigcup_{x \in X} O(x)$.

ad (III): Buď $z \in O(x) \cap O(y)$. Existují $g, h \in G$ tak, že $z = gx$, $z = hy$. Zvolme libovolně $u \in O(x)$. Existuje $p \in G$, $px = u$. Je $gx = hy$. Z toho pak $g^{-1}(gx) = g^{-1}(hy)$, $(gg^{-1})x = (g^{-1}h)y$, $1x = (g^{-1}h)y$, $x = (g^{-1}h)y$.

Dále, $u = px = p((g^{-1}h)y) = (pg^{-1}h)y$. Je $pg^{-1}h \in G$. Víme, že $u \in O(y)$. Ukázali jsme, že $O(x) \subseteq O(y)$. Obdobně lze ukázat, že $O(y) \subseteq O(x)$.

Stabilizátor prvku x je množina

$$G_x = \{g \in G | gx = x\} \subseteq G.$$

5.1.7. TVRZENÍ. Nechť je dána akce grupy G na množině X. Nechť $x \in X$.

Pak stabilizátor G_x je podgrupa grupy G.

DŮKAZ. Je třeba ukázat následující:
(I) $1 \in G_x$
(II) Jestliže $g \in G_x$, pak $g^{-1} \in G_x$.
(III) Jestliže $g, h \in G_x$, pak $gh \in G_x$.

ad (I): $1x = x$, takže $1 \in G_x$.

ad (II): Nechť $g \in G_x$. Pak $gx = x$. Z toho dostáváme $g^{-1}(gx) = g^{-1}x$,
$(g^{-1}g)x = g^{-1}x, 1x = g^{-1}x, x = g^{-1}x, g^{-1} \in G_x$.

ad (III): Nechť $g, h \in G_x$. Pak $gx = x, hx = x$. Z toho dostáváme $(gh)x =
(g(h)x) = gx = x, gh \in G_x$.

5.1.8. VĚTA. Nechť je dána akce grupy G na množině X. Nechť $x \in X$.

Pak $\text{card}(O(x)) = [G : G_x]$.

DŮKAZ. Podle definice je $[G : G_x] = \text{card}(G / G_x)$. Stačí tedy sestrojit nějakou bijekci $f : G / G_x \to O(x)$.

Nechť $a, b \in G$. Dokážeme toto tvrzení:
Jestliže $aG_x = bG_x$, pak $ax = bx$.
Nechť tedy $aG_x = bG_x$. Je $a \in aG_x$, takže $a \in bG_x$, $a = bg$ pro nějaké $g \in G_x$.
Pak $ax = (bg)x = b(gx) = bx$.
Definujme zobrazení $f : G/G_x \rightarrow O(x)$ předpisem
$$f(aG_x) = ax$$
(a je libovolný prvek z G). Výše dokázané tvrzení ukazuje, že zobrazení f je definováno korektně.

1. f je injekce:
 Nechť $a, b \in G$, $f(aG_x) = f(bG_x)$. Chceme: $aG_x = bG_x$.
 Víme, že $ax = bx$. Zvolme libovolně $g \in G_x$. Ukážeme, že prvek ag patří do množiny bG_x. Je
 $ag = 1 \cdot ag = (bb^{-1})(ag) = b(b^{-1}ag)$.
 Nyní
 $$(b^{-1}ag)x = (b^{-1}a)(gx) = (b^{-1}a)x = b^{-1}(ax) = b^{-1}(bx) = (b^{-1}b)x = 1x = x.$$
 Takže $b^{-1}ag \in G_x$ a tedy $ag \in bG_x$.
 Vzhledem k tomu, že prvek $g \in G_x$ byl zvolen libovolně, máme dokázánu inkluzi $aG_x \subseteq bG_x$. Obdobně lze dokázat, že $bG_x \subseteq aG_x$. Celkem $aG_x = bG_x$.

2. f je surjekce:
 Prvky z $O(x)$ mají tvar ax, kde $a \in G$. Ovšem $f(aG_x) = ax$. Vidíme, že f je surjekce.

Důkaz. Víme, že stabilizátor G_x je podgrupa grupy G (viz 5.1.7.). Podle Lagrangeovy věty (3.1.9.) platí:
$$\text{card}(G) = [G : G_x] \cdot \text{card}(G_x).$$
Dle 5.1.8. je $\text{card}(O(x)) = [G : G_x]$, takže
$$\text{card}(G) = \text{card}(O(x)) \cdot \text{card}(G_x).$$
Vidíme, že $\text{card}(O(x))/\text{card}(G)$.
5.2 Věty Sylowova a Cauchyova

Nechť G je konečná grupa řádu n.

Jestliže H je podgrupa grupy G, pak $\text{card}(H)/n$. To plyne z Lagrangeovy věty (3.1.9.).

Nechť nyní d je kladné celé číslo, d/n. Položme si otázku, zda v grupě G existuje podgrupa řádu d.

Samozřejmě, v případě $d = 1$ nebo $d = n$ taková podgrupa určitě existuje (pro $d = 1$ jde o podgrupu $\{1\}$, pro $d = n$ jde o podgrupu G). V této kapitole uvidíme, že taková podgrupa vždy existuje v případě $d = p^k$, kde p je prvočíslo a k je nezáporné celé číslo. Nelze však tvrdit, že taková podgrupa vždy existuje pro jakékoliv d. V následujícím příkladě uvidíme, že grupa A_4 řádu 12 nemá žádnou podgrupu řádu 6, ačkoli $6/12$.

5.2.1. Příklad. Budeme se zabývat grupou A_4. O alternujících grupách je pojednáno v 2.4. Udělejme nyní tuto úmluvu: Permutaci $\pi \in S_n$ (n je přirozené číslo) budeme zapisovat stručně jako posloupnost $\pi(1) \pi(2) \ldots \pi(n)$.

Vypíšeme nejdříve všechny permutace z S_3 a určíme pro každou z nich počet inverzí.

<table>
<thead>
<tr>
<th>Permutace</th>
<th>123</th>
<th>132</th>
<th>321</th>
<th>213</th>
<th>312</th>
<th>231</th>
</tr>
</thead>
<tbody>
<tr>
<td>Počet inverzí</td>
<td>0</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

Jedna permutace abc z S_3 určí čtyři permutace z S_4:

$4abc$, $a4bc$, $ab4c$, $abc4$.

Počet inverzí v permutaci abc označme k. Pak platí:

<table>
<thead>
<tr>
<th>Permutace</th>
<th>$4abc$</th>
<th>$a4bc$</th>
<th>$ab4c$</th>
<th>$abc4$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Počet inverzí</td>
<td>$k + 3$</td>
<td>$k + 2$</td>
<td>$k + 1$</td>
<td>k</td>
</tr>
</tbody>
</table>

Do A_4 patří ty permutace z S_4, které mají sudý počet inverzí. Vypíšeme nyní všechny permutace z A_4:

$1423 = \pi_1$
$1234 = \text{id}$
$4132 = \pi_2$
$1342 = \pi_3$
$4321 = \pi_4$
$3241 = \pi_5$
KAPITOLA 5. AKCE GRUPY NA MNOŽINĚ A SYLOWOVA VĚTA

4213 = π₆
2143 = π₇
3412 = π₈
3124 = π₉
2431 = π₁₀
2314 = π₁₁.
Nyní určíme řády všech permutací z A₄:

π₁² = 1342 = π₃, π₁³ = 1234 = id, π₁ má řád 3
id má řád 1
π₂² = 2431 = π₁₀, π₂³ = 1234 = id, π₂ má řád 3
π₃² = 1423 = π₁, π₃³ = 1234 = id, π₃ má řád 3
π₁² = 1234 = id, π₁ má řád 2
π₇² = 4213 = π₆, π₇³ = 1234 = id, π₇ má řád 3
π₅² = 3241 = π₅, π₅³ = 1234 = id, π₅ má řád 3
π₂² = 1234 = id, π₂ má řád 2
π₈² = 1234 = id, π₈ má řád 2
π₉² = 2314 = π₁₁, π₉³ = 1234 = id, π₉ má řád 3
π₁₀² = 4132 = π₂, π₁₀³ = 1234 = id, π₁₀ má řád 3
π₁₁² = 3124 = π₉, π₁₁³ = 1234 = id, π₁₁ má řád 3.

Zjistili jsme, že grupa A₄ má 1 prvek řádu 1, totiž prvek id
má 3 prvky řádu 2, totiž prvky π₄, π₇, π₈
má 8 prvků řádu 3, totiž prvky π₁, π₂, π₃, π₅, π₆, π₉, π₁₀, π₁₁.
Bud x prvek řádu 3. Pak ⟨x⟩ = {1, x, x²}.
Prvek x² má také řád 3 a ⟨x²⟩ = {1, x², x}.

Pro libovolnou podgrupu H pak platí:

\[x \in H \iff x^2 \in H. \]

Vidíme, že prvky řádu 3 se budou v podgrupách vyskytovat ve dvojicích x, x². Pro grupu A₄ dostáváme následující dvojice:

\[π₁, π₃ \]
\[π₂, π₁₀ \]
\[π₅, π₆ \]
\[π₉, π₁₁. \]

Předpokládejme nyní, že H je podgrupa grupy A₄, H má řád 6. Jsou dvě možnosti:

1. H obsahuje 2 prvky řádu 3.
 Jsou čtyři možnosti:
5.2. VĚTY SYLOWOVA A CAUCHYHOVA

(I) \(H = \{ \text{id}, \pi_4, \pi_7, \pi_8, \pi_1, \pi_3 \} \)

(II) \(H = \{ \text{id}, \pi_4, \pi_7, \pi_8, \pi_2, \pi_{10} \} \)

(III) \(H = \{ \text{id}, \pi_4, \pi_7, \pi_8, \pi_5, \pi_6 \} \)

(IV) \(H = \{ \text{id}, \pi_4, \pi_7, \pi_8, \pi_9, \pi_{11} \} \).

ad (I): \(\pi_4 \cdot \pi_1 = 3241 = \pi_5 \in H \), spor.

ad (II): \(\pi_4 \cdot \pi_2 = 2314 = \pi_{11} \in H \), spor.

ad (III): \(\pi_4 \cdot \pi_5 = 1423 = \pi_1 \in H \), spor.

ad (IV): \(\pi_4 \cdot \pi_9 = 4213 = \pi_6 \in H \), spor.

2. \(H \) obsahuje 4 prvky řádu 3.

Je šest možností:

(I) \(H = \{ \text{id}, \varrho, \pi_1, \pi_3, \pi_2, \pi_{10} \} \)

(II) \(H = \{ \text{id}, \varrho, \pi_1, \pi_3, \pi_5, \pi_6 \} \)

(III) \(H = \{ \text{id}, \varrho, \pi_1, \pi_3, \pi_9, \pi_{11} \} \)

(IV) \(H = \{ \text{id}, \varrho, \pi_2, \pi_{10}, \pi_5, \pi_6 \} \)

(V) \(H = \{ \text{id}, \varrho, \pi_2, \pi_{10}, \pi_9, \pi_{11} \} \)

(VI) \(H = \{ \text{id}, \varrho, \pi_5, \pi_6, \pi_9, \pi_{11} \} \).

Ve všech šesti případech je \(\varrho \in \{ \pi_4, \pi_7, \pi_8 \} \).

ad (I): \(\pi_1 \cdot \pi_2 = 4213 = \pi_6 \in H \), spor.

ad (II): \(\pi_1 \cdot \pi_5 = 3124 = \pi_9 \in H \), spor.

ad (III): \(\pi_1 \cdot \pi_{11} = 2431 = \pi_{10} \in H \), spor.

ad (IV): \(\pi_2 \cdot \pi_5 = 1342 = \pi_3 \in H \), spor.

ad (V): \(\pi_2 \cdot \pi_{11} = 4213 = \pi_6 \in H \), spor.

ad (VI): \(\pi_5 \cdot \pi_{11} = 1342 = \pi_3 \in H \), spor.

Právě provedený důkaz sporem ukazuje, že grupa \(A_4 \) nemá žádnou podgrupu řádu 6. Přitom card(\(A_4 \)) = 12 a 6/12.

Nyní nás čeká jedno pomocné tvrzení o binomických koeficientech.

5.2.1. Tvrzení. Nechť \(p \) je prvočíslo, \(m \) je kladné celé číslo, \(n \) je nezáporné celé číslo, \(p \) nědělí \(m \). Nechť \(k, l \) jsou taková nezáporná celá čísla, že \(k + l = n \). Pak \(\binom{p^{k+l}}{p^k} \) nedělí \(\binom{m}{p^k} \).

DŮKAZ. Nechť \(k > 0 \).
Buď $i \in \{1, \ldots, p^k - 1\}$. Buď r_i nezáporné celé číslo, s_i kladné celé číslo, $i = p^{r_i}s_i$, p nedělí s_i. Zřejmě $r_i < k$ (jinak by bylo $i = p^{r_i}s_i \geq p^r \geq p^k$).

Platí:

$$p^k - i = p^k - p^{r_i}s_i = p^{r_i}(p^{k-r_i} - s_i).$$

Takže p^{r_i} dělí $p^k - i$, p^{r_i+1} nedělí $p^k - i$ (případ p^{r_i+1} dělí $p^k - i$ by dal p dělí $p^{k-r_i} - s_i$, což by dalo p dělí $p^{k-r_i} - (p^{k-r_i} - s_i) = s_i$).

Dále platí:

$$p^m - i = p^m - p^{r_i}s_i = p^{r_i}(p^{m-r_i} - s_i).$$

Takže p^{r_i} dělí $p^m - i$, p^{r_i+1} nedělí $p^m - i$ (případ p^{r_i+1} dělí $p^m - i$ by dal p dělí $p^{m-r_i}m - s_i$, což by dalo p dělí $p^{m-r_i}m - (p^{m-r_i}m - s_i) = s_i$).

Existují tedy kladné celá čísla u_i, v_i s těmito vlastnostmi:

$p^k - i = p^{r_i}u_i$, p nedělí u_i

$p^m - i = p^{r_i}v_i$, p nedělí v_i.

Pak

$$\binom{p^m}{p^k} p^{r_1}u_1 \ldots p^{r_{k-1}}u_{p^k-1} = p^j m p^{r_1}v_1 \ldots p^{r_{k-1}}v_{p^k-1}$$

$$\binom{p^m}{p^k} u_1 \ldots u_{p^k-1} = p^j m v_1 \ldots v_{p^k-1}.$$

Předpokládejme, že p^{i+1} dělí $p^{r_i}(p^{m_1})$. Pak p dělí $m v_1 \ldots v_{p^k-1}$. Protože p nedělí m, existuje $i \in \{1, \ldots, p^k - 1\}$, p dělí v_i. To je spor.

Tudíž p^{i+1} nedělí $p^{r_i}(p^{m_1})$.

Na počátku důkazu jsme vynechali případ $k = 0$. Nyní se k němu vrátíme.

Nechť tedy $k = 0$. Pak $l = n$ a je třeba dokázat, že p^{n+1} nedělí $p^{r_i}(p^m) = \binom{p^m}{p^k} = p^m$. Kdyby p^{n+1} dělilo p^m, pak by p dělilo m, což by byl spor. Takže p^{n+1} však nedělí p^m.
5.2. VĚTY SYLOWOVA A CAUCHYOVA

DŮKAZ. Nechť p^k dělí řád grupy G. Grupa G má řád $p^n m$, kde m je kladné celé číslo, n je nezáporné celé číslo, p nedělí m, $0 \leq k \leq n$.

Nechť X je soubor všech podmnožin grupy G, které mají mohutnost p^k, tj.

$X = \{A \subseteq G | card(A) = p^k\}$.

Je $\text{card}(X) = \left(\frac{p^n}{p^k}\right)$. Dle tvrzení 5.2.1. p^{l+1} nedělí $\text{card}(X)$ (je $k+l = n$).

Definujme akci grupy G na množině X:

Pro $g \in G$, $A \in X$ položíme

$gA = \{ga | a \in A\}$.

Skutečné jsme definovali akci grupy G na množině X - viz příklad 5.1.2.

Uvědomme si, že systém množin $\{O(A) | A \in X\}$ je rozklad množiny X (viz 5.1.5.).

Existuje tedy přirozené číslo r a prvky $A_1, \ldots, A_r \in X$ tak, že

$\text{card}(X) = \text{card}(O(A_1)) + \cdots + \text{card}(O(A_r))$.

Předpokládejme, že pro každé $i \in \{1, 2, \ldots, r\}$ platí: $p^{l+1}/\text{card}(O(A_i))$. Pak ovšem $p^{l+1}/\text{card}(X)$, spor.

Existuje tedy $B \in X$, p^{l+1} nedělí $\text{card}(O(B))$.

Buď G_B stabilizátor prvku B. Pak (dle 5.1.8.)

$\text{card}(O(B)) = [G : G_B]$.

Lagrangeova věta říká, že $[G : G_B] \cdot \text{card}(G_B) = \text{card}(G)$. Z toho dostáváme

$\text{card}(O(B)) \cdot \text{card}(G_B) = \text{card}(G) = p^n m$.

Pak $\text{card}(G_B) = p^s m'$, kde s je celé číslo, $0 \leq s \leq n$, m' je kladné celé číslo, $m = m'm''$ pro nějaké kladné celé číslo m''.

Je $\text{card}(O(B)) = p^{n-s} m''$. Jelikož p^{l+1} nedělí $\text{card}(O(B))$, máme $n-s \leq l$, $k+l-s \leq l$, $k \leq s$. Takže $\text{card}(G_B) = p^s m' \geq p^k \geq p^k$.

Zvolme nyní $b_0 \in B$. To lze, neboť $\text{card}(B) = p^k \geq p^0 = 1$.

Buď $g \in G_B$. Jelikož g je prvek stabilizátoru G_B, je $gB = B$. Je $gb_0 \in gB$, neboť $\text{card}(O(gB)) = \text{card}(O(gb_0))$.
takže $gb_0 \in B$.

Vidíme, že je možno definovat zobrazení $f : G_B \to B$ pomocí předpisu $f(g) = gb_0$ (pro libovolné $g \in G_B$).

Nechť $g, h \in G_B$, $f(g) = f(h)$. Pak $gb_0 = hb_0$, $g = h$ (použili jsme zákon o krácení). Právě jsme dokázali, že zobrazení f je prosté. Z toho vyplyvá, že $\text{card}(G_B) \leq \text{card}(B) = p^k$.

Celkem: $\text{card}(G_B) = p^k$.

Víme, že stabilizátor G_B je podgrupa grupy G (viz 5.1.7.). Před chvílí jsme dokázali, že G_B má řád p^k.

Ze Sylowovy věty například vyplývá, že každá grupa řádu $1000 = 2^3 \cdot 5^3$ má určitě podgrupy řádů 2, 4, 8, 5, 25, 125.

Následující věta je důsledkem věty Sylowovy.

Důkaz. Nechť $p/\text{card}(G)$. Z věty 5.2.2. plyne, že G má nějakou podgrupu H řádu p. Nechť $a \in H$, $a \neq 1$. Víme, že řád prvku a dělí řád grupy H (viz 3.1.10.), tedy řád prvku a dělí p. Protože $a \neq 1$, má prvek a řád p.

Buďte p prvočíslo, k celé číslo, $k \geq 2$.

Fakt p dělí $\text{card}(G)$ zaručuje, že grupa G obsahuje nějaký prvek řádu p (to říká Cauchyova věta).

Fakt p^k dělí $\text{card}(G)$ vůbec nezaručuje, že grupa G obsahuje nějaký prvek řádu p^k. Ukazuje to následující příklad.

5.2.4. Příklad. Buďte p prvočíslo, k celé číslo, $k \geq 2$. Uvažme grupu $G = \mathbb{Z}_p^k$.

Zřejmé $\text{card}(G) = p^k$, takže $p^k/\text{card}(G)$. Nechť $x \in \mathbb{Z}_p$. Pak $px = 0$ dle 3.1.11. Nechť $a = (a_1, \ldots, a_k) \in \mathbb{Z}_p^k$. Pak

$$pa = (a_1, \ldots, a_k) + \cdots + (a_1, \ldots, a_k)$$

$$= (a_1 + \cdots + a_1, \ldots, a_k + \cdots + a_k)$$

$$= (pa_1, \ldots, pa_k)$$

$$= (0, \ldots, 0)$$

$$= 0.$$
5.3. CENTRUM GRUPY

Na závěr této části uvedeme příklad, který předvěde aplikaci Cauchyovy věty při důkazu jednoho tvrzení o komutativních grupách.

5.2.5. Příklad. Nechť G je grupa, p a q jsou prvočísla, $p \neq q$. Předpokládejme, že grupa G je komutativní a že má řád pq. Dokážeme:

$$G \cong \mathbb{Z}_{pq} \cong \mathbb{Z}_p \times \mathbb{Z}_q.$$

Podle Cauchyovy věty existují prvky $a, b \in G$, a má řád p, b má řád q. Uvědomme si, že řád prvku ab dělí řád grupy G. Jsou tedy čtyři možnosti:

1. ab má řád 1
2. ab má řád p
3. ab má řád q
4. ab má řád pq

ad (I):

$$1 = 1^p = (ab)^p = a^pb^p = 1 \cdot b^p = b^p,$$
$$1 = 1^q = (ab)^q = a^qb^q = a^q \cdot 1 = a^q,$$

Celkem $p = q$, spor.

ad (II):

$$1 = (ab)^p = a^pb^p = 1 \cdot b^p = b^p$$

Uvažme dělení se zbytkem $p = uq + v$ ($u, v \in \mathbb{Z}$, $0 \leq v < q$). Protože $p \neq q$, je $v \neq 0$, $0 < v < q$. Platí:

$$1 = b^p = b^{uq+v} = (b^q)^u \cdot b^v = 1^u \cdot b^v = 1 \cdot b^v = b^v$$

Dostali jsme spor, protože q je řád prvku b a $0 < v < q$.

ad (III): Tato možnost vede ke sporu obdobně jako možnost (II). Protože možnosti (I), (II), (III) dávají spor, nutně nastává varianta (IV). Takže prvek ab má řád pq. Dle 4.1.5. je $G \cong \mathbb{Z}_{pq}$.

Nyní si stačí uvědomit, že grupa $\mathbb{Z}_p \times \mathbb{Z}_q$ je komutativní a že má řád pq. Z toho plyne izomorfismus $\mathbb{Z}_p \times \mathbb{Z}_q \cong \mathbb{Z}_{pq}$.

Například, existuje jediná komutativní grupa řádu 35, a to grupa $\mathbb{Z}_{35} \cong \mathbb{Z}_5 \times \mathbb{Z}_7$.

5.3 Centrum grupy

5.3.1. Definice. Nechť G je grupa. Centrum grupy G označujeme $Z(G)$ a definujeme jej jako

$$Z(G) = \{ a \in G | \forall g \in G : ag = ga \}.$$
5.3.2. Tvržení. Nechť G je grupa. Platí:

1. $Z(G)$ je normální podgrupa grupy G

2. $Z(G)$ je komutativní grupa.

Důkaz.

1. Je třeba dokázat následující:
 (I) $1 \in Z(G)$
 (II) Jestliže $a \in Z(G)$, pak $a^{-1} \in Z(G)$.
 (III) Jestliže $a, b \in Z(G)$, pak $ab \in Z(G)$.
 (IV) Jestliže $a \in Z(G), g \in G$, pak $gag^{-1} \in Z(G)$.

 ad (I): Buď $g \in G$. Chceme: $g \cdot 1 = 1 \cdot g$. To zřejmě platí.

 ad (II): Nechť $a \in Z(G), g \in G$. Chceme: $a^{-1}g = ga^{-1}$. Vím, že $ag = ga$. Pak $a^{-1}(ag)a^{-1} = a^{-1}(ga)a^{-1}, (a^{-1}a)ga^{-1} = a^{-1}g(aa^{-1})$, $1 \cdot ga^{-1} = a^{-1}g \cdot 1, ga^{-1} = a^{-1}g$.

 ad (III): Nechť $a, b \in Z(G), g \in G$. Chceme: $(ab)g = g(ab)$. Počítejme: $(ab)g = a(bg) = a(gb) = (ag)b = (ga)b = g(ab)$.

 ad (IV): Nechť $a \in Z(G), g \in G$. Chceme $gag^{-1} \in Z(G)$. Počítejme: $gag^{-1} = (ga)g^{-1} = (ag)g^{-1} = a(gg^{-1}) = a \cdot 1 = a \in Z(G)$.

2. Tvrzení druhé části je zřejmé.

Co se týče centra grupy G, mohou nastat dva krajní případy.

1. $Z(G) = G$
 Je snadné si rozmyslet, že tento případ nastane právě tehdy, když grupa G je komutativní.

2. $Z(G) = \{1\}$
 V tomto případě říkáme, že grupa G je bez centra.

Uvedeme nyní příklady grup bez centra.

5.3.3. Příklad. Nechť M je množina, $\text{card}(M) \geq 3$. Pak symetrická grupa $S(M)$ je grupa bez centra, tj. $Z(S(M)) = \{id\}$. Speciálně, grupy S_n pro $n \geq 3$ jsou grupy bez centra. Zdůvodnění:
Buď $\pi \in S(M)$, $\pi \neq id$. Ukážeme, že $\pi \not\in Z(S(M))$.
Protože $\pi \neq id$, existují $a, b \in M$, $a \neq b$, $\pi(a) = b$. Jsou tři možnosti (teoreticky):

(I) $\pi(b) = a$
(II) $\pi(b) = b$
(III) $\pi(b) \neq a$, $\pi(b) \neq b$

ad (I): Protože $\text{card}(M) \geq 3$, existuje $c \in M$, $c \neq a$, $c \neq b$. Definujeme zobrazení $\varrho : M \rightarrow M$ takto:

$\varrho(a) = b$
$\varrho(b) = c$
$\varrho(c) = a$
$\varrho(x) = x$ pro $x \in M - \{a, b, c\}$.

Snadno se vidi, že $\varrho \in S(M)$. Počítejme:

$(\pi \varrho)(a) = \varrho(\pi(a)) = \varrho(b) = c$
$(\varrho \pi)(a) = \pi(\varrho(a)) = \pi(b) = a$
$(\pi \varrho)(a) \neq (\varrho \pi)(a) \Rightarrow \pi \varrho \neq \varrho \pi \Rightarrow \pi \not\in Z(S(M))$.

ad (II): Tato možnost nenastává, neboť zobrazení π by nebylo prosté.

ad (III): Označme $\pi(b) = c$. Je $c \in M$, $c \neq a$, $c \neq b$. Definujeme zobrazení $\varrho : M \rightarrow M$ takto:

$\varrho(a) = b$
$\varrho(b) = a$
$\varrho(c) = c$
$\varrho(x) = x$ pro $x \in M - \{a, b, c\}$.

Snadno se vidi, že $\varrho \in S(M)$. Počítejme:

$(\pi \varrho)(a) = \varrho(\pi(a)) = \varrho(b) = a$
$(\varrho \pi)(a) = \pi(\varrho(a)) = \pi(b) = c$
$(\pi \varrho)(a) \neq (\varrho \pi)(a) \Rightarrow \pi \varrho \neq \varrho \pi \Rightarrow \pi \not\in Z(S(M))$.

Nyní se ještě hodí uvést příklad grupy G, pro kterou $Z(G) \neq G$, $Z(G) \neq \{1\}$.

5.3.4. Příklad. Uvažme grupu kvaternionů Q (viz část 2.7.). Grupa Q není komutativní, takže $Z(Q) \neq Q$. Pro všechna $\alpha \in Q$ je $(-1) \cdot \alpha = -\alpha$, $\alpha \cdot (-1) = -\alpha$, což dává $-1 \in Z(Q)$. Je tedy $Z(Q) \neq \{1\}$.

5.3.5. Definice. Nechť G je grupa, p je prvočíslo. Grupa G se nazývá p-grupa, pokud její řád je roven p^k, kde k je nějaké kladné celé číslo.

DŮKAZ. Předpokládejme, že G je p-grupa. Existuje kladné celé číslo k tak, že $\text{card}(G) = p^k$. Definujeme akci grupy G na množině G takto:

$$g \circ x = gxg^{-1}$$

pro $g \in G$, $x \in G$.

Opravdu jsme definovali akci grupy G na G, jak je ukázáno v příkladu 5.1.3.

Nechť $x \in G$, $x \in Z(G)$. Zvolme $g \in G$ libovolně. Pak $g \circ x = gxg^{-1} = (gx)g^{-1} = (g)g^{-1} = (gg^{-1}) = x \cdot 1 = x$. Takže $O(x) = \{x\}$.

Nechť $x \in G$, $O(x) = \{x\}$. Zvolme $g \in G$ libovolně. Pak $g \circ x = x$, $gxg^{-1} = x$, $(gxg^{-1})g = xg$, $(gx)(g^{-1}g) = xg$, $gx \cdot 1 = xg$, $gx = xg$. Takže $x \in Z(G)$. Právě jsme dokázali následující ekvivalenci: Pro všechna $x \in G$,

$$x \in Z(G) \Leftrightarrow O(x) = \{x\}.$$

Víme, že soubor $\{O(x) | x \in G\}$ je rozklad množiny G (viz 5.1.5.). Existuje přirozené číslo r, prvky $x_1, x_2, \ldots, x_r \in G$,

$$G = O(x_1) \cup O(x_2) \cup \cdots \cup O(x_r),$$

a přitom pro všechna $i, j \in \{1, \ldots, r\}$ platí

$$i \neq j \Rightarrow O(x_i) \cap O(x_j) = \emptyset.$$

Nechť číslo $s \in \{1, \ldots, r\}$ má tuto vlastnost:

$$i \in \{1, \ldots, s\} \Leftrightarrow O(x_i) = \{x_i\}.$$

Takže

$$G = \{x_1\} \cup \cdots \cup \{x_s\} \cup O(x_{s+1}) \cup \cdots \cup O(x_r),$$

$$G = \{x_1, \ldots, x_s\} \cup O(x_{s+1}) \cup \cdots \cup O(x_r).$$

Dle výše dokázaného (jednoprvkovou orbitu mají právě prvky centra) je $Z(G) = \{x_1, \ldots, x_s\}$, takže

$$G = Z(G) \cup O(x_{s+1}) \cup \cdots \cup O(x_r),$$

$$\text{card}(G) = \text{card}(Z(G)) + \text{card}(O(x_{s+1})) + \cdots + \text{card}(O(x_r)).$$
Pro $j \in \{s+1, \ldots, r\}$ máme $\text{card}(O(x_j))/p^k$ (viz 5.1.9.), tudíž $\text{card}(O(x_j)) = p^{k_j}$ pro celé číslo k_j, $0 < k_j \leq k$ (je $k_j > 0$, protože $O(x_j) \neq \{x_j\}$). Nyní

$$p^k = \text{card}(Z(G)) + p^{k+1} + \cdots + p^r.$$

Je zřejmé, že $p/\text{card}(Z(G))$, a tedy $Z(G) \neq \{1\}$.

Samozřejmě, věta 5.3.6. je v souladu s příkladem 5.3.4. Grupa kvaternionů Q má řád 8, takže je to 2-grupa a nutně $Z(Q) \neq \{1\}$.

Na závěr této části pomocí věty 5.3.6. dokážeme, že neexistuje žádná nekomutativní grupa řádu p^2 (p je prvočíslo).

5.3.7. Věta

Důkaz

Nechť G má řád p^2. Nechť $v \in G$. Položme

$$H = \{av^k \mid a \in Z(G), k \in \Bbb{Z}\}.$$

Dokážeme, že H je komutativní podgrupa grupy G. K tomu je třeba dokázat:

(I) $1 \in H$

(II) Jestliže $x \in H$, pak $x^{-1} \in H$

(III) Jestliže $x, y \in H$, pak $xy \in H$

(IV) Jestliže $x, y \in H$, pak $xy = yx$

ad (I): $1 = 1 \cdot 1 = 1 \cdot v^0$. Protože $1 \in Z(G)$, $0 \in Z$, je $1 \in H$.

ad (II): Nechť $x \in H$. Chceme: $x^{-1} \in H$. Existuji $a \in Z(G)$, $k \in \Bbb{Z}$, $x = av^k$.

Pak $x^{-1} = (av^k)^{-1} = (v^k)^{-1}a^{-1} = v^{-k}a^{-1}$. Protože $Z(G)$ je podgrupa, je $a^{-1} \in Z(G)$, $x^{-1} = v^{-k}a^{-1} = a^{-1}v^{-k} \in H$.

ad (III): Nechť $x, y \in H$. Chceme: $xy \in H$. Existují $a, b \in Z(G)$, $k, l \in \Bbb{Z}$, $x = av^k$, $y = bv^l$. Pak $xy = (av^k)(bv^l) = a(v^k)b(v^l) = a(bv^k)v^l = (ab)(v^kv^l) = (ab)v^{k+l}$. Protože $Z(G)$ je podgrupa, je $ab \in Z(G)$. Pak $xy = (ab)v^{k+l} \in H$.

ad (IV): Nechť $x, y \in H$. Chceme: $xy = yx$. Existují $a, b \in Z(G)$, $k, l \in \Bbb{Z}$, $x = av^k$, $y = bv^l$. V části (III) jsme již spočítali $xy = (ab)v^{k+l}$. Dále, $yx = (bv^l)(av^k) = b(v^l)a(v^k) = b(av^l)v^k = (ba)(v^lv^k) = (ab)v^{l+k}$. Podařilo se nám tedy ukázat, že $xy = yx$.

Dále dokážeme, že $Z(G) \subseteq H$.

Zvolme libovolné $a \in Z(G)$. Chceme: $a \in H$. Ovšem $a = a \cdot 1 = av^0 \in H$.

Podle 5.3.6. je $Z(G) \neq \{1\}$. $Z(G)$ je podgrupa grupy G (5.3.2.). Dle Lagrangeovy věty (3.1.9.) pak $\text{card}(Z(G))/p^2$. Vzhledem k faktu $Z(G) \neq \{1\}$ tedy...
víme, že \(\text{card}(Z(G)) = p \) nebo \(\text{card}(Z(G)) = p^2 \). Varianta \(\text{card}(Z(G)) = p^2 \) je příznivá - plyne z ní \(Z(G) = G \) a tedy \(G \) je komutativní. Stačí tudíž vyloučit variantu \(\text{card}(Z(G)) = p \). Postupujeme sporem. Předpokládejme, že \(\text{card}(Z(G)) = p \). Buď \(v \in G - Z(G) \). Uvažme výše zavedenou podgrupu \(H \). Je \(v = 1 \cdot v^1 \in H \). Takže \(Z(G) \subseteq H, Z(G) \neq H \). Pak nutně \(\text{card}(H) = p^2 \), \(H = G \) (řád podgrupy \(H \) totiž dělí \(p^2 \) dle Lagrangeovy věty a víme, že \(\text{card}(H) > \text{card}(Z(G)) = p \)). Protože \(H \) je komutativní, je \(G \) komutativní. Pak ovšem \(Z(G) = G, \text{card}(Z(G)) = p^2 \), spor.
Kapitola 6

Faktorové grupy

6.1 Definice faktorové grupy

Nechť m je kladné celé číslo. Položme

$$H_m = \{ km \mid k \in \mathbb{Z} \}.$$

Snadno se lze přesvědčit, že H_m je podgrupa grupy \mathbb{Z}. Víme, že systém množin

$$\{ a + H_m \mid a \in \mathbb{Z} \}$$

je rozklad množiny \mathbb{Z} (věta 3.1.2.). Tento rozklad značíme \mathbb{Z}/H_m. Povšimněme si, že pro každou levou třídu grupy \mathbb{Z} podle podgrupy H_m platí: $a + H_m = \bar{a}$, kde, pro připomenutí, $\bar{a} = \{ x \in \mathbb{Z} \mid x \equiv a \ (m) \}$. Zdůvodnění následuje:

1. $a + H_m \subseteq \bar{a}$:
 Nechť $x \in a + H_m$. Pak existuje celé číslo k s vlastností $x = a + km$. Pak $x - a = km$, m dělí $x - a$, $x \equiv a \ (m)$. To ovšem znamená, že $x \in \bar{a}$.

2. $\bar{a} \subseteq a + H_m$:
 Nechť $x \in \bar{a}$. Pak $x \equiv a \ (m)$, m dělí $x - a$, $x - a = km$ pro nějaké $k \in \mathbb{Z}$. Pak $x = a + km$ pro $k \in \mathbb{Z}$, $x \in a + H_m$.

Takže $\mathbb{Z}/H_m = \{ a + H_m \mid a \in \mathbb{Z} \} = \{ \bar{a} \mid a \in \mathbb{Z} \} = \mathbb{Z}_m$ a pro libovolná $a, b \in \mathbb{Z}$ platí:

$$ (a + H_m) + (b + H_m) = \bar{a} + \bar{b} = \overline{a + b} = (a + b) + H_m.$$
KAPITOLA 6. FAKTOROVÉ GRUPY

Nyní se pokusíme o zobecnění. Buď G libovolná grupa, buď H podgrupa grupy G. Na množině G/H definujeme násobení následujícím předpisem:

$$(a \cdot H) \cdot (b \cdot H) = (a \cdot b) \cdot H$$

(a, b jsou libovolné prvky z G).

6.1.1. Příklad. Uvažme grupu S_3. Přijměme označení z příkladu 2.3.13., v němž jsme se grupou S_3 zabývali. Jelikož $a^2 = i$, má prvek a řád 2 a $H = \{i, a\}$ je podgrupa grupy S_3. Mělo by být $(bH) \cdot (bH) = (bb)H = iH = H$. Také by mělo být $(dH) \cdot (dH) = (dd)H = cH = e \cdot \{i, a\} = \{e, ia\}$. Všimněme si však, že $bH = b \cdot \{i, a\} = \{bi, ba\} = \{b, d\}$, $dH = d \cdot \{i, a\} = \{di, da\} = \{b, d\}$. Tudíž $bH = dH$. Pak ovšem $(bH) \cdot (bH) = (dH) \cdot (dH)$, tedy $H = \{e, c\}$, spor. Získaný spor ukazuje, že definice násobení na množině G/H není korektní (aspoň pro $G = S_3$ a $H = \{i, a\}$ vede ke sporu).

Zesílíme předpoklad o podgrupě H. Předpokládejme, že podgrupa H je normální (viz 1.4.19.). Samozřejmě, v případě komutativní grupy G se o žádné zesílení nejedná, neboť každá podgrupa komutativní grupy je normální.

6.1.2. Tvrzení. Nechť G je grupa, nechť H je normální podgrupa grupy G. Pak předpis

$$(aH) \cdot (bH) = (ab)H$$

($a, b \in G$) korektně definuje operaci na množině G/H a G/H s touto operací je grupa.

Důkaz. Zabývejme se nejdříve korektnosti definice. Nechť $a, b, c, d \in G$, $aH = cH$, $bH = dH$. Chceme: $(ab)H = (cd)H$. Buď $x \in (ab)H$. Ukážeme, že $x \in (cd)H$. Existuje $h \in H$ tak, že $x = abh$. Jelikož $a = a \cdot 1$ a $1 \in H$, je $a \in H$. Ovšem $aH = cH$, takže $a \in cH$. Existuje $u \in H, a = cu$. Jelikož $b = b \cdot 1$ a $1 \in H$, je $b \in bH$. Ovšem $bH = dH$, takže $b \in dH$. Existuje $v \in H, b = dv$. Pak $x = abh = (cu)(dv)h$. Počítejme:

$$x = cudvh = c \cdot 1 \cdot udvh = c(dd^{-1})udvh = (cd)((d^{-1}ud)vh).$$

Je $d^{-1}ud = d^{-1}u(d^{-1})^{-1}$. Protože $u \in H$ a podgrupa H je normální, je $d^{-1}ud \in H$. Protože $d^{-1}ud, v, h \in H$, máme $(d^{-1}ud)vh \in H$ (H je podgrupa).
6.1. DEFINICE FAKTOROVÉ GRUPY

Pak ovšem \(x = (cd)((d^{-1}ud)vh) \in (cd)H \). Prvek \(x \in (ab)H \) jsme zvolili libovolně, takže je dokázána inkluze \((ab)H \subseteq (cd)H\). Obdobně lze dokázat, že \((cd)H \subseteq (ab)H\), a tedy \((ab)H = (cd)H\). Zbývá dokázat, že \(G/H \) je grupa.

1. Buďte \(a, b, c \in G \). Chceme: \((aH) \cdot ((bH) \cdot (cH)) = ((aH) \cdot (bH)) \cdot (cH)\).

 Počítejme:

 \[
 (aH) \cdot ((bH) \cdot (cH)) = (aH) \cdot (bc)H = (a(bc))H = ((ab)c)H = (ab)H \cdot (cH) = ((aH) \cdot (bH)) \cdot (cH).
 \]

2. Buďte \(a \in G \). Pak

 \[
 (1H) \cdot (aH) = (1 \cdot a)H = aH, \quad (aH) \cdot (1H) = (a \cdot 1)H = aH.
 \]

 Vidíme, že \(1H = H \) je neutrální prvek.

3. Buďte \(a \in G \). Pak

 \[
 (aH) \cdot (a^{-1}H) = (aa^{-1})H = 1H = H, \quad (a^{-1}H) \cdot (aH) = (a^{-1}a)H = 1H = H.
 \]

 Vidíme, že prvek \(a^{-1}H \) je inverzní k prvku \(aH \).

6.1.3. Definice. Nechť \(G \) je grupa, nechť \(H \) je normální podgrupa grupy \(G \). Grupa \(G/H \) z tvrzení 6.1.2. se nazývá faktorová grupa grupy \(G \) podle podgrupy \(H \).

Vzhledem k tvrzení 6.1.2. podgrupa \(H = \{i, a\} \) nemůže být normální podgrupou grupy \(S_3 \) (vracíme se ještě krátce k příkladu 6.1.1.). Vskutku, \(a \in H, b \in S_3 \), přitom však \(bab^{-1} = bab = db = c \notin H \) (označení, stejně jako v 6.1.1., je vzato z 2.3.13.).
6.1.4. Příklad. Zopakujme jeden základní příklad faktorové grupy. Nechť m je kladné celé číslo. Položme $H_m = \{km \mid k \in \mathbb{Z}\}$. Pak H_m je (normální) podgrupa grupy \mathbb{Z} a $\mathbb{Z}/H_m = \mathbb{Z}_m$.

6.1.5. Příklad. Uvažme grupu \mathbb{C}^\times a její podgrupu $H = \{x \in \mathbb{C} \mid |x| = 1\}$ (viz 1.4.5.). Dále uvažme grupu \mathbb{R} a její podgrupu \mathbb{Z}. Protože \mathbb{R} je komutativní, je \mathbb{Z} normální podgrupa grupy \mathbb{R}. Definujeme zobrazení $f : \mathbb{R}/\mathbb{Z} \to H$ takto: Pro $a \in \mathbb{R}$ klademe

$$f(a + \mathbb{Z}) = \cos 2\pi a + i \sin 2\pi a.$$

 Prověříme nejprve, že zobrazení f je definováno korektně.

1. Chceme: $\cos 2\pi a + i \sin 2\pi a \in H$.
 To platí, neboť $|\cos 2\pi a + i \sin 2\pi a| = \sqrt{\cos^2 2\pi a + \sin^2 2\pi a} = \sqrt{1} = 1$.

2. Nechť $a, b \in \mathbb{R}$, $a + \mathbb{Z} = b + \mathbb{Z}$. Chceme: $\cos 2\pi a + i \sin 2\pi a = \cos 2\pi b + i \sin 2\pi b$.
 Je $0 \in \mathbb{Z}$, takže $a = a + 0 \in a + \mathbb{Z}$. Pak $a \in b + \mathbb{Z}$. Existuje $k \in \mathbb{Z}$, $a = b + k$. Z toho plyne

$$\cos 2\pi a + i \sin 2\pi a = \cos 2\pi b + i \sin 2\pi b.$$

Vyživli jsme fakt, že funkce \cos, \sin mají periodu 2π.

Nyní se přesvědčíme, že f je izomorfismus:

1. f je homomorfismus:
 Nechť $a, b \in \mathbb{R}$. Chceme: $f((a + \mathbb{Z}) + (b + \mathbb{Z})) = f(a + \mathbb{Z}) \cdot f(b + \mathbb{Z})$.
 Počítejme:
 $$f((a + \mathbb{Z}) + (b + \mathbb{Z})) = f((a + b) + \mathbb{Z}) = \cos 2\pi (a + b) + i \sin 2\pi (a + b) = \cos(2\pi a + 2\pi b) + i \sin(2\pi a + 2\pi b) = (\cos 2\pi a \cdot \cos 2\pi b - \sin 2\pi a \cdot \sin 2\pi b) + i(\sin 2\pi a \cdot \cos 2\pi b + \cos 2\pi a \cdot \sin 2\pi b),$$
 $$f(a + \mathbb{Z}) \cdot f(b + \mathbb{Z}) = (\cos 2\pi a + i \sin 2\pi a) \cdot (\cos 2\pi b + i \sin 2\pi b) = \cos 2\pi a + i \sin 2\pi a = \cos 2\pi b + i \sin 2\pi b.$$
6.1. DEFINICE FAKTOROVÉ GRUPY

\[6.1. \text{DEFINICE FAKTOROVÉ GRUPY} \]

\[= \cos 2\pi a \cdot \cos 2\pi b + i \cos 2\pi a \cdot \sin 2\pi b - \sin 2\pi a \cdot \sin 2\pi b = (\cos 2\pi a \cdot \cos 2\pi b - \sin 2\pi a \cdot \sin 2\pi b) + i(\sin 2\pi a \cdot \cos 2\pi b + \cos 2\pi a \cdot \sin 2\pi b). \]

Vidíme, že \(f((a + Z) + (b + Z)) = f(a + Z) \cdot f(b + Z). \)

2. \(f \) je injekce:

Nechť \(a, b \in \mathbb{R}, \ f(a + Z) = f(b + Z). \) Chceme: \(a + Z = b + Z. \)

Víme, že \(\cos 2\pi a + i \sin 2\pi a = \cos 2\pi b + i \sin 2\pi b. \) Pak \(\cos 2\pi a = \cos 2\pi b, \) \(\sin 2\pi a = \sin 2\pi b. \) Tedy

\[
\begin{align*}
\cos 2\pi a - \cos 2\pi b &= -2 \cdot \sin \frac{\pi}{2} \cdot \sin \frac{\pi}{2} \\
&= -2 \cdot \sin(\pi a + \pi b) \cdot \sin(\pi a - \pi b) \\
&= 0,
\end{align*}
\]

\[
\begin{align*}
\sin 2\pi a - \sin 2\pi b &= 2 \cdot \cos \frac{\pi}{2} \cdot \sin \frac{\pi}{2} \\
&= 2 \cdot \cos(\pi a + \pi b) \cdot \sin(\pi a - \pi b) \\
&= 0.
\end{align*}
\]

Předpokládejme, že \(\sin(\pi a - \pi b) \neq 0. \) Pak musí být \(\sin(\pi a + \pi b) = 0 \) a \(\cos(\pi a + \pi b) = 0. \) Existují tedy celá čísla \(k, l \) s vlastností \(\pi a + \pi b = k \pi, \) \(\pi a + \pi b = \frac{k}{2} + l \pi. \) Odtud \(k \pi = \frac{\pi}{2} + l \pi, k = \frac{1}{2} + l, 2k = 1 + 2l, \) sudé číslo je rovno lichému číslu, spor.

Nutně tedy \(\sin(\pi a - \pi b) = 0. \) Pak existuje celé číslo \(k, \pi a - \pi b = k \pi, \) \(a - b = k. \) Ukážeme, že \(a + Z = b + Z. \)

Buď \(x \in a + Z. \) Existuje \(l \in Z, \ x = a + l. \) Pak \(x = (b + k) + l = b + (k + l) \in b + Z. \) Ukázali jsme, že \(a + Z \subseteq b + Z. \)

Buď \(x \in b + Z. \) Existuje \(m \in Z, \ x = b + m. \) Pak \(x = (a - k) + m = a + (m - k) \in a + Z. \) Ukázali jsme, že \(b + Z \subseteq a + Z. \)

Celkem tedy \(a + Z = b + Z. \)

3. \(f \) je surjekce:

Nechť \(x \in H. \) Hledáme \(a \in \mathbb{R} \) tak, aby \(f(a + Z) = x. \)

Existuje \(\alpha \in \mathbb{R} \) tak, že \(x = |x| \cdot (\cos \alpha + i \sin \alpha) = 1 \cdot (\cos \alpha + i \sin \alpha) = \cos \alpha + i \sin \alpha \) (tzv. goniometrické vyjádření čísla \(x). \) Buď \(a = \frac{\alpha}{2\pi}. \) Pak
a ∈ R a

\[f(a + \mathbb{Z}) = \cos 2\pi a + i \sin 2\pi a \]
\[= \cos 2\pi \cdot \frac{\alpha}{2\pi} + i \sin 2\pi \cdot \frac{\alpha}{2\pi} \]
\[= \cos \alpha + i \sin \alpha \]
\[= x. \]

Sestrojili jsme izomorfismus \(f : \mathbb{R}/\mathbb{Z} \to H \). Tedy \(\mathbb{R}/\mathbb{Z} \cong H = \{ x \in \mathbb{C} \mid |x| = 1 \} \).

6.2 Faktorové grupy a homomorfismy

Připomeňme si, že pro homomorfismus \(f : G_1 \to G_2 \) je jádro ker \(f \) definováno jako ker \(f = \{ x \in G_1 \mid f(x) = 1 \} \).

6.2.1. Věta. Nechť \(G \) je grupa, \(H \) je normální podgrupa grupy \(G \). Definujme zobrazení \(f : G \to G/H \) předpisem

\[f(a) = aH \]

pro \(a \in G \). Pak \(f \) je surjektivní homomorfismus a ker \(f = H \).

Důkaz.

1. \(f \) je homomorfismus:
 Nechť \(a, b \in G \). Počítejme:
 \[f(a \cdot b) = (a \cdot b)H = (aH) \cdot (bH) = f(a) \cdot f(b). \]

2. \(f \) je surjekce:
 Nechť \(x \in G/H \). Hledáme \(a \in G \) tak, aby \(f(a) = x \).
 Existuje \(a \in G \), \(x = aH \). Pak \(f(a) = aH = x \).

3. ker \(f = H \):
 Nechť \(a \in \text{ker } f \). Chceme: \(a \in H \).
 Je \(f(a) = 1 \cdot H \), tj. \(aH = H \). Protože \(a = a \cdot 1 \in aH \), máme \(a \in H \).
 Nechť \(a \in H \). Chceme: \(a \in \text{ker } f \).
 Je třeba ukázat, že \(f(a) = 1 \cdot H \), tj. \(aH = H \).
6.2. FAKTOROVÉ GRUPY A HOMOMORFISMY

\[aH \subseteq H: \]
Buď \(x \in aH \). Existuje \(h \in H, x = ah \). Protože \(a, h \in H \), \(H \) je podgrupa, je \(ah \in H \). Takže \(x \in H \).

\(H \subseteq aH: \)
Buď \(x \in H \). Je \(x = 1 \cdot x = (aa^{-1})x = a(a^{-1}x) \). Protože \(a \in H \), \(H \) je podgrupa, je \(a^{-1} \in H \). Protože \(x \in H \), je též \(a^{-1}x \in H \). Pak \(x = a(a^{-1}x) \in aH \).

Nechť \(G_1, G_2 \) jsou grupy, \(f : G_1 \to G_2 \) je homomorfismus. Víme již, že \(\ker f \) je podgrupa grupy \(G_1 \) (viz 1.4.10.). Platí dokonce víc, jak ukazuje další tvrzení.

6.2.2. Tvrzení. Nechť \(G_1, G_2 \) jsou grupy, \(f : G_1 \to G_2 \) je homomorfismus. Pak \(\ker f \) je normální podgrupa grupy \(G_1 \).

Důkaz. Z 1.4.10. víme, že \(\ker f \) je podgrupa grupy \(G_1 \). Zbývá ještě ukázat následující:
Nechť \(h \in \ker f, g \in G_1 \). Chceme: \(ghg^{-1} \in \ker f \). Počítejme:
\[
f(ghg^{-1}) = f(g)f(h)f(g^{-1}) = f(g) \cdot 1 \cdot f(g^{-1}) = f(g)f(g)^{-1} = 1.
\]
Vidíme, že \(ghg^{-1} \in \ker f \).

V případě homomorfismu \(f : G_1 \to G_2 \) lze tedy vždy uvažovat faktorovou grupu \(G_1/\ker f \). O této grupě (v případě, že \(f \) je surjekce) vypovídá následující věta.

6.2.3. Věta. Nechť \(G_1, G_2 \) jsou grupy, \(f : G_1 \to G_2 \) je surjektivní homomorfismus. Pak \(G_1/\ker f \cong G_2 \).

Důkaz. Definujme zobrazení \(g : G_1/\ker f \to G_2 \) takto:
\[
g(\bar{a} \cdot \ker f) = f(a)
\]
\((a \in G_1) \). Nejprve musíme dokázat, že zobrazení \(g \) je definováno korektně. Nechť tedy \(a, b \in G_1, a \cdot \ker f = b \cdot \ker f \). Je třeba, aby \(f(a) = f(b) \). Je \(1 \in \ker f \), takže \(a = a \cdot 1 \in a \cdot \ker f \). Pak ovšem \(a \in b \cdot \ker f \) a existuje \(c \in \ker f, a = bc \). Nyní \(f(a) = f(bc) = f(b)f(c) = f(b) \cdot 1 = f(b) \).
Ukážeme, že \(g \) je izomorfismus.
1. *g* je homomorfismus:
 Buďte *a*, *b* ∈ *G*. Chceme: *(a ker *f*) · *(b ker *f) = g(a ker *f) · g(b ker *f).
 Počítejme:

 \[
 g((a \ker f) \cdot (b \ker f)) = g(ab) \ker f = f(ab) = f(a) \cdot f(b) = (a \ker f) \cdot \bigg(g(b \ker f) \bigg).
 \]

2. *g* je injekce:
 Buďte *a*, *b* ∈ *G*, *(a ker *f) = g(b ker *f)*. Chceme: *a* ker *f* = *b* ker *f*.
 Víme, že *f*(*a*) = *f*(*b*).
 Buď *x* ∈ *a* ker *f*. Existuje *c* ∈ ker *f*, *x* = *ac*. Pak *x* = 1 · *ac* = (*bb*−1)*ac* = *b*(*b*−1)*ac*. Platí: *f*(*b*−1)*ac* = *f*(*b*)−1*f*(*a*) *f*(*c*) = *f*(*b*)−1*f*(*b*) · 1 = 1, takže *b*−1*ac* ∈ ker *f*. Jako důsledek máme *x* ∈ *b* ker *f*. Jelikož prvek *x* ∈ *a* ker *f* jsme volili libovolně, dokázali jsme inkluzi *a* ker *f* ⊆ *b* ker *f*. Odvodně se dokáže, že *b* ker *f* ⊆ *a* ker *f*. Celkem pak *a* ker *f* = *b* ker *f*.

3. *g* je surjekce:
 Buď *y* ∈ *G*. Hledáme *a* ∈ *G* tak, aby *g*(*a* ker *f*) = *y*. Protože zobrazení *f* je surjekce, existuje *a* ∈ *G*, *f*(*a*) = *y*. Pak ovšem \(g(a \ker f) = f(a) = y\).

Našli jsme izomorfismus \(g : G_1 / \ker f \to G_2\). V důsledku pak \(G_1 / \ker f \cong G_2\).

Uvedeme teď několik příkladů ilustrujících větu 6.2.3.

6.2.4. Příklad. Nechť *G* je grupa. Uvažme zobrazení \(f : G \to \{1\}\) dané vztahem \(f(x) = 1\) pro každé \(x \in G\). Zřejmě \(f\) je surjektivní homomorfismus. Pak \(G / \ker f \cong \{1\}\). Ovšem ker *f* = *G*, takže \(G/G \cong \{1\}\).

6.2.5. Příklad. Nechť *G* je grupa. Uvažme identické zobrazení \(id : G \to G\). Zřejmě \(id\) je izomorfismus. Pak \(G / \ker id \cong G\). Ovšem ker \(id = \{1\}\), takže \(G / \{1\} \cong G\).

6.2.6. Příklad. Uvažme zobrazení \(f : \mathbb{R}^\times \to \mathbb{R}^+\) dané předpisem \(f(x) = |x|\) (pro libovolné \(x \in \mathbb{R}^\times\)). Buďte *x*, *y* ∈ \(\mathbb{R}^\times\). Pak

\[
 f(x \cdot y) = |x \cdot y| = |x| \cdot |y| = f(x) \cdot f(y).
\]

Vidíme, že *f* je homomorfismus.
Dále, nechť *y* ∈ \(\mathbb{R}^+\) je libovolný prvek. Pak \(y \in \mathbb{R}^\times\) a \(f(y) = |y| = y\). Vidíme,
FAKTOROVÉ GRUPY A HOMOMORFISMY

6.2.

že f je surjekce.
Dle věty 6.2.3. pak $\mathbb{R}^\times / \ker f \cong \mathbb{R}^+$. Jak vypadá $\ker f$? Dle definice $\ker f = \{ x \in \mathbb{R}^\times | f(x) = 1 \}$. Tedy

$$\ker f = \{ x \in \mathbb{R}^\times | |x| = 1 \} = \{ 1, -1 \}.$$

Na závěr lze říci, že $\mathbb{R}^\times / \{ 1, -1 \} \cong \mathbb{R}^+$.

6.2.7. Příklad. Množina $\{ 1, -1 \}$ spolu s operací násobení je grupa (je to podgrupa grupy \mathbb{R}^\times). Nechť n je celé číslo, $n \geq 2$. Všimněme si, že zobrazení $Sg : S_n \to \{ 1, -1 \}$ je surjektní homomorfismus. Nechť $\pi, \rho \in S_n$. Pak $Sg(\pi \rho) = Sg(\pi) \cdot Sg(\rho)$ (viz 2.3.12.). Takže Sg je homomorfismus. Zobrazení Sg je surjekce, neboť sudé permutace z S_n zobrazuje na 1 a liché permutace z S_n zobrazuje na -1 (přitom je důležité si uvědomit, že v S_n vždy existují sudé i liché permutace - všech sudých permutací je $\frac{n!}{2}$, všech lichých permutací je také $\frac{n!}{2}$). Podle 6.2.3. je $S_n / \ker Sg \cong \{ 1, -1 \}$. Jak vypadá $\ker Sg$? Je

$$\ker Sg = \{ \pi \in S_n | Sg(\pi) = 1 \} = A_n$$

(viz 2.4.1.).
Závěrem lze konstatovat, že $S_n / A_n \cong \{ 1, -1 \}$.

6.2.8. Příklad. V tomto příkladu se zabýváme obecnou lineární grupou (viz část 2.5). Nechť n je kladné celé číslo, nechť T je těleso. Uvažme zobrazení $f : GL(n, T) \to T^\times$ dané předpisem

$$f(A) = |A|$$

($A \in GL(n, T)$). Připomeňme, že $|A|$ značí determinant matice A. Zobrazení f je surjektní homomorfismus:

1. Nechť $A, B \in GL(n, T)$. Pak

$$f(AB) = |AB| = |A| \cdot |B| = f(A) \cdot f(B).$$

2. Buď $c \in T^\times$. Hledáme $A \in GL(n, T)$ tak, aby $f(A) = c$.
Definujme matice $A \in T_{n,n}$ takto:

$a_{11} = c$, $a_{ii} = 1$ pro $i \in \{ 2, \ldots, n \}$, $a_{ij} = 0$ pro $i, j \in \{ 1, 2, \ldots, n \}$, $i \neq j$.

Pak $|A| = a_{11} \cdot a_{22} \cdots a_{nn} = c \cdot 1 \cdots 1 = c \neq 0$.
Tudíž $A \in GL(n, T)$ a také $f(A) = |A| = c$.
Nyní aplikujeme 6.2.3. a dostáváme $GL(n, T)/\ker f \cong T^\times$. Je

\[
\ker f = \{ A \in GL(n, T) \mid f(A) = 1 \} = \{ A \in GL(n, T) \mid |A| = 1 \} = \{ A \in T_{n,n} \mid |A| = 1 \}.
\]

Podgrupa $\{ A \in T_{n,n} \mid |A| = 1 \}$ grupy $GL(n, T)$ se označuje $SL(n, T)$ a nazývá se speciální lineární grupa. Ukázali jsme tedy, že $GL(n, T)/SL(n, T) \cong T^\times$.
Kapitola 7

Konečné (zvláště komutativní) grupy

7.1 Nerozložitelné grupy

Zopakujme si některé základní poznatky o celých číslech. Celá čísla lze násobit a toto násobení je asociativní a komutativní. Významnou roli hrají prvočísla. Celé číslo \(p > 1 \) se nazývá prvočíslo, pokud pro všechna kladná celá čísla \(u, v \) platí

\[
p = uv \Rightarrow (u = 1 \lor v = 1).
\]

Také grupy lze násobit. Máme na mysli součin grup zavedený v části 1.5. Násobení grup je také asociativní a komutativní, a to v následujícím smyslu: Pro všechny grupy \(G_1, G_2, G_3 \) platí

\[
(G_1 \times G_2) \times G_3 \cong G_1 \times (G_2 \times G_3), \ G_1 \times G_2 \cong G_2 \times G_1
\]

(viz 1.5.5. a 1.5.6.). Analogií pojmu prvočíslo je pojem nerozložitelná grupa.

7.1.1. Definice. Nechť \(G \) je grupa, \(\text{card}(G) > 1 \). Grupa \(G \) se nazývá nerozložitelná, pokud pro všechny grupy \(H, K \) platí

\[
G \cong H \times K \Rightarrow (H = \{1\} \lor K = \{1\}).
\]
7.1.2. Příklad. Každá grupa G řádu p, kde p je prvočíslo, je nerozložitelná. Nechť $G \cong H \times K$. Pak $\text{card}(G) = \text{card}(H) \cdot \text{card}(K)$, $p = \text{card}(H) \cdot \text{card}(K)$. Jelikož p je prvočíslo, je $\text{card}(H) = 1$ nebo $\text{card}(K) = 1$. Pak ovšem $H = \{1\}$ nebo $K = \{1\}$.

7.1.3. Příklad. Nechť p je prvočíslo. Každá cyklická p-grupa je nerozložitelná. Buď G cyklická p-grupa. Existuje $a \in G$, $G = \langle a \rangle$. Existuje celé číslo n, $n > 0$, $\text{card}(G) = p^n$. Dokážeme sporem, že grupa G je nerozložitelná. Předpokládejme, že G je rozložitelná (tj. není nerozložitelná). Pak existují grupy H, K, $G \cong H \times K$, $H \neq \{1\}$, $K \neq \{1\}$. Je $\text{card}(G) = \text{card}(H) \cdot \text{card}(K) = p$, $\text{card}(H) = p^i$, $\text{card}(K) = p^j$, přičemž i, j jsou celá čísla, $i > 0$, $j > 0$, $i + j = n$. Bez újmy na obecnosti lze předpokládat, že $i \leq j$. Pro každý prvek $k \in K$ je $k^{p^i} = 1$ (viz 3.1.11.). Dále, pro každý prvek $h \in H$ je

$$h^{p^j} = h^{p^i \cdot p^{j-i}} = (h^{p^i})^{p^{j-i}} = 1^{p^{j-i}} = 1.$$

Nechť $h \in H$, $k \in K$. Pak

$$(h, k)^{p^j} = (h^{p^j}, k^{p^j}) = (1, 1).$$

Takže každý prvek grupy $H \times K$ má řád nejvýše p^j. Ovšem $G \cong H \times K$, takže každý prvek grupy G má řád nejvýše p^j. Označme r řád prvku a. Je $r \leq p^j$ (neboť $a \in G$). Podgrupa $\langle a \rangle$ má řád r (viz 1.4.18.). Protože $G = \langle a \rangle$, G má řád r. Všimněme si, že $0 < i$, což dává $p^i < p^i$, $p^i \cdot p^j < p^i \cdot p^j$, $p^{i+j} < p^{i+j}$, $p^i < p^i$. Platí:

$$\text{card}(G) = r \leq p^j < p^n = \text{card}(G).$$

Je tedy $\text{card}(G) < \text{card}(G)$. Dostali jsme spor. Tudíž G je nerozložitelná. Uvědomme si ještě, že cyklické p-grupy jsou (až na izomorfnismus) právě grupy \mathbb{Z}_{p^n}, kde n je celé číslo, $n > 0$ (viz 4.1.4.). V tomto příkladu jsme tudíž ukázali nerozložitelnost grup \mathbb{Z}_{p^n}, kde p je prvočíslo a n je celé číslo, $n > 0$.

Máme již k dispozici příklady konečných nerozložitelných komutativních grup (jsou to grupy \mathbb{Z}_{p^n}). Uvedeme dále příklady konečných nerozložitelných nekomutativních grup.
7.1. NEROZLOŽITELNÉ GRUPY

7.1.4. Příklad. Nechť p je prvočíslo. Každá nekomutativní grupa řádu p^3 je nerozložitelná. Buď G nekomutativní grupa řádu p^3. Dokážeme sporem, že G je nerozložitelná. Předpokládejme, že G je rozložitelná. Pak existují grupy H, K, přičemž $G \cong H \times K$, $H \neq \{1\}$, $K \neq \{1\}$. Potom $\text{card}(G) = \text{card}(H) \cdot \text{card}(K)$, $\text{card}(H) > 1$, $\text{card}(K) > 1$. Jelikož $\text{card}(G) = p^3$, je $\text{card}(H) = p$, $\text{card}(K) = p^2$ nebo $\text{card}(H) = p^2$, $\text{card}(K) = p$. Nechť náprázdný příklad $\text{card}(H) = p$, $\text{card}(K) = p^2$ (situace $\text{card}(H) = p^2$, $\text{card}(K) = p$ je obdobná). Uvědomme si, že $H \cong \mathbb{Z}_p$ (viz 4.1.6.), tudíž H je komutativní.

Také K je komutativní dle 5.3.7. Pak ovšem $H \times K$ je komutativní (viz 1.5.9.). Jelikož $G \cong H \times K$, je G komutativní, spor. Záver: G je nerozložitelná.

Uveďme ještě konkrétní příklad konečné nerozložitelné nekomutativní grupy.

Snad bude ještě vhodné uvést aspoň jeden příklad nekonečné nerozložitelné grupy.

7.1.5. Příklad. Vezměme grupu \mathbb{Z}. Ukážeme, že \mathbb{Z} je nerozložitelná. Nechť H, K jsou grupy, $\mathbb{Z} \cong H \times K$. Protože grupy H, K jsou komutativní, použijeme pro ně aditivní symboliku. Položme $A = H \times \{0\}$, $B = \{0\} \times K$. Množiny A, B jsou podgrupy grupy $H \times K$. Ukážeme to pro množinu A (důkaz pro B je obdobný).

1. Je $0 \in H$, takže $(0, 0) \in H \times \{0\} = A$. Přitom $(0, 0)$ je neutrální prvek grupy $H \times K$.

2. Nechť $x \in A$. Chceme: $-x \in A$.

Je $x = (h, 0)$ pro nějaké $h \in H$. Pak $-x = -(h, 0) = (-h, -0) = (-h, 0) \in H \times \{0\} = A$.

3. Nechť $x, y \in A$. Chceme: $x + y \in A$.

Je $x = (r, 0)$, $y = (s, 0)$ pro nějaké $r, s \in H$. Pak $x + y = (r, 0) + (s, 0) = (r + s, 0 + 0) = (r + s, 0) \in H \times \{0\} = A$.

Všimněme si, že $A \cap B = \{(0, 0)\}$. Nyní dokážeme sporem, že $A = \{(0, 0)\}$ nebo $B = \{(0, 0)\}$. Předpokládejme, že $A \neq \{(0, 0)\}$ a $B \neq \{(0, 0)\}$. Tedy: v $H \times K$ existují dvě neměnitelné podgrupy, jejichž průnikem je podgrupa triviální (triviální podgrupou rozumíme podgrupu $\{(0, 0)\}$). Protože $\mathbb{Z} \cong H \times K$, existují v \mathbb{Z} podgrupy C, D, $C \cap D = \{0\}$, $C \neq \{0\}$, $D \neq \{0\}$. Dle 4.2.1. existují nezáznamná celá čísla c, d tak že $C = \langle c \rangle$, $D = \langle d \rangle$. Protože $C \neq \{0\}$, $D \neq \{0\}$, je $c \neq 0$, $d \neq 0$. Víme, že $\langle c \rangle = \{nc| n \in \mathbb{Z}\}$, $D = \{nd| n \in \mathbb{Z}\}$.
KAPITOLA 7. KONEČNÉ (ZVLÁŠTĚ KOMUTATIVNÍ) GRUPY

Z}. Pak dc ∈ ⟨c⟩, cd ∈ ⟨d⟩, cd ∈ C ∩ D. Jelikož cd ≠ 0, dostáváme se ke sporu s faktem C ∩ D = {0}. Tudíž A = {(0, 0)} nebo B = {(0, 0)}. Nechť A = {(0, 0)}. Protože A = H × {0}, musí být H = {0}. Nechť B = {(0, 0)}. Protože B = {0} × K, musí být K = {0}. Závěr: grupa Z je nerozložitelná.

Vzpomínejme dále. Velký význam prvočísel spočívá v tom, že každé celé číslo n, n > 1, lze rozložit na součin prvočísel:

\[n = p_1 p_2 \cdots p_k \]

(p_1, p_2, ..., p_k jsou prvočísla, ne nutně navzájem různá).

Analogii pro konečné grupy dokážeme v následující větě.

7.1.6. Věta. Nechť G je konečná grupa, \(\text{card}(G) > 1\). Pak existuje kladné celé číslo k a nerozložitelné grupy H_1, H_2, ..., H_k takové, že

\[G \cong H_1 \times H_2 \times \cdots \times H_k. \]

Důkaz. Budeme postupovat indukcí vzhledem ke \(\text{card}(G)\).

1. \(\text{card}(G) = 2\)
 Grupa G má řád 2 a 2 je prvočíslo. Takže G je nerozložitelná (viz 7.1.2.). Bude tedy k = 1 a H_1 = G.

2. \(\text{card}(G) > 2\)
 Jsou dvě možnosti:
 (I) G je nerozložitelná
 (II) G je rozložitelná

 ad (I): Položíme k = 1, H_1 = G.
 ad(II): Existují grupy A, B takové, že G \cong A \times B, A ≠ {1}, B ≠ {1}.

 Je \(\text{card}(G) = \text{card}(A) \cdot \text{card}(B)\), \(\text{card}(A) > 1\), \(\text{card}(B) > 1\). Zřejmě \(\text{card}(A) < \text{card}(G)\), \(\text{card}(B) < \text{card}(G)\). Dle indukčního předpokladu existuje kladné celé číslo r a nerozložitelné grupy C_1, ..., C_r tak, že

 \[A \cong C_1 \times \cdots \times C_r. \]

 Dle indukčního předpokladu existuje kladné celé číslo s a nerozložitelné grupy D_1, ..., D_s tak, že

 \[B \cong D_1 \times \cdots \times D_s. \]

 Pak

 \[G \cong A \times B \cong C_1 \times \cdots \times C_r \times D_1 \times \cdots \times D_s. \]

 Nyní stačí položit k = r + s, H_1 = C_1, ..., H_r = C_r, H_{r+1} = D_1, ..., H_{r+s} = H_k = D_s.
7.2. POPIS VŠECH KONEČNÝCH KOMUTATIVNÍCH GRUP

V čem je význam věty 7.1.6.? V určitém smyslu lze říci: Kdybychom znali všechny nerozložitelné konečné grupy, pak bychom znali všechny konečné grupy. Jeden dosti speciální případ se nám podaří vyřešit v následující části tohoto studijního textu. Popíšeme všechny konečné nerozložitelné komutativní grupy a tím budeme vlastně znát všechny konečné komutativní grupy.

Vraťme se ještě k rozkladům přirozených čísel na součin prvočísel. Důležitou vlastností těchto rozkladů je jednoznačnost.

Nechť n je celé číslo, $n > 1$. Nechť k, l jsou kladná celá čísla, p_1, \ldots, p_k, q_1, \ldots, q_l jsou prvočísla. Předpokládejme, že

$$n = p_1 \cdots p_k, \quad n = q_1 \cdots q_l.$$

Pak $k = l$ a existuje permutace π množiny $\{1, \ldots, l\}$ tak, že $p_i = q_{\pi(i)}$ pro všechna $i \in \{1, \ldots, l\}$.

7.1.7. Věta. (Krull - Schmidt) Nechť G je konečná grupa, $\text{card}(G) > 1$. Nechť s, t jsou kladná celá čísla, H_1, \ldots, H_s, K_1, \ldots, K_t jsou nerozložitelné grupy. Předpokládejme, že $G \cong H_1 \times \cdots \times H_s$, $G \cong K_1 \times \cdots K_t$. Pak $s = t$ a existuje permutace π množiny $\{1, \ldots, t\}$ tak, že $H_i \cong K_{\pi(i)}$ pro všechna $i \in \{1, \ldots, t\}$.

Důkaz. Věta (v obecnějším znění, nikoli jen pro konečné grupy) je dokázána například v knize [4], kde se jedná o větu 6.36.

7.2 Popis všech konečných komutativních grup

Pokusíme se nyní získat popis všech konečných komutativních grup. Buď G konečná komutativní grupa, $\text{card}(G) > 1$. Podle věty 7.1.6. je $G \cong H_1 \times \cdots \times H_k$, kde H_1, \ldots, H_k jsou nerozložitelné grupy. Samozřejmě, grupy H_1, \ldots, H_k jsou také konečné a komutativní (viz 1.5.9.).

Lze tedy říci: Abychom popsali všechny konečné komutativní grupy, bude stačit, když popíšeme všechny konečné komutativní nerozložitelné grupy.
7.2.1. Tvrzení. Nechť G je komutativní grupa řádu $m \cdot n$, kde m a n jsou celá čísla, $m > 1$, $n > 1$, m a n jsou nesoudělná. Pak grupa G je rozložitelná.

Důkaz. Buď $H = \{x \in G \mid x^m = 1\}$, $K = \{x \in G \mid x^n = 1\}$.

Ukážeme, že H je podgrupa grupy G. Je třeba ukázat následující:

(I) $1 \in H$

(II) Jestliže $x \in H$, pak $x^{-1} \in H$.

(III) Jestliže $x, y \in H$, pak $xy \in H$.

ad (I): $1^m = 1$, takže $1 \in H$

ad (II): Nechť $x \in H$. Chceme: $x^{-1} \in H$. Víme, že $x^m = 1$. Pak $(x^{-1})^m = (x^m)^{-1} = 1^{-1} = 1$, takže $x^{-1} \in H$.

ad (III): Nechť $x, y \in H$. Chceme: $xy \in H$. Víme, že $x^m = 1$, $y^m = 1$. Pak $(xy)^m = x^my^m = 1 \cdot 1 = 1$, takže $xy \in H$.

Obdobně lze dokázat, že také K je podgrupa grupy G. Protože G je komutativní, jsou podgrupy H a K normální. Nyní dokážeme, že $HK = G$. Inkluze $HK \subseteq G$ je zřejmá. Buď tedy $x \in G$. Potřebujeme, aby $x \in HK$. Protože čísla m, n jsou nesoudělná, existují celá čísla u, v taková, že $1 = um + vn$ (viz 2.2.4.). Pak

$$x = x^1 = x^{um + vn} = x^{um} \cdot x^{vn}.$$

Všimněme si, že $(x^{vn})^m = (x^v)^{mn} = 1$ (využili jsme 3.1.11.). Vidíme, že $x^m \in H$. Dále, $(x^{um})^n = (x^u)^{mn} = 1$, což dává $x^{um} \in K$. Poněvadž $x = x^m \cdot x^{um}$, $x^m \in H$, $x^{um} \in K$, je $x \in HK$.

Nyní dokážeme, že $H \cap K = \{1\}$.

Buď $x \in H \cap K$. Chceme: $x = 1$. Protože $x \in H$, je $x^m = 1$. Protože $x \in K$, je $x^n = 1$. Použijeme opět rovnost $1 = um + vn$. Dostáváme

$$x = x^1 = x^{um + vn} = x^{um} \cdot x^{vn} = (x^m)^u \cdot (x^n)^v = 1^u \cdot 1^v = 1 \cdot 1 = 1.$$

Víme toto: H, K jsou normální podgrupy grupy G, $G = HK$, $H \cap K = \{1\}$.

Podle věty 1.5.7. pak $G \cong H \times K$.

Zbývá ještě dokázat, že $H \neq \{1\}$, $K \neq \{1\}$.

Jelikož $m > 1$, existuje prvočíslo p, p dělí m. Buď q kladné celé číslo, $m = pq$.

Je $\text{card}(G) = mn = pqn$, takže p dělí $\text{card}(G)$. Dle Cauchyovy věty (5.2.3.) existuje prvek $a \in G$, který má řád q. Jistě $a \neq 1$. Dále, $a^m = a^{pq} = (a^p)^q = 1^q = 1$, takže $a \in H$. Zjistíme jsme, že $H \neq \{1\}$. Obdobně lze dokázat, že $K \neq \{1\}$.

114 KAPITOLA 7. KONEČNÉ (ZVLÁŠTĚ KOMUTATIVNÍ) GRUPY
7.2. POPIS VŠECH KONEČNÝCH KOMUTATIVNÍCH GRUP

Nechť G je konečná komutativní grupa, $\text{card}(G) > 1$. Nechť $\text{card}(G) = p_1^{k_1} \cdots p_s^{k_s}$, kde s je celé číslo, $s \geq 2$, p_1, \ldots, p_s jsou navzájem různá prvočísla, k_1, \ldots, k_s jsou kladná celá čísla. Položme $m = p_1^{k_1}$, $n = p_2^{k_2} \cdots p_s^{k_s}$. Pak m, n jsou celá čísla, $m > 1$, $n > 1$, m a n jsou nesoudělná, $\text{card}(G) = m \cdot n$. Podle tvrzení 7.2.1. je grupa G rozložitelná. Chceme-li, aby grupa G byla nerozložitelná, musí být $s = 1$. Tuďíž, konečné komutativní nerozložitelné grupy musíme hledat mezi p-grupami (p je prvočíslo).

Důkaz. Grupa G má řád p^n, kde n je kladné celé číslo. Specielně, $\text{card}(G) > 1$.
Každý prvek grupy G má řád p^l, kde l je celé číslo, $0 \leq l \leq n$ (viz 3.1.10.).
Buď $a \in G$ prvek, který má největší řád. Nechť tento řád je p^k. Je k celé číslo, $0 < k < n$ (případ $k = 0$ by dával $\text{card}(G) = 1$, případ $k = n$ by znamenal, že grupa G je cyklická).
Buď H podgrupa grupy G s těmito vlastnostmi:

1. $H \cap \langle a \rangle = \{1\}$
2. Pro libovolnou podgrupu K grupy G platí: Jestliže $K \cap \langle a \rangle = \{1\}$, pak $\text{card}(K) \leq \text{card}(H)$.

Nyní dokážeme pomocné tvrzení:
Nechť $x \in G$. Jestliže $x^p \in \langle a \rangle H$, pak $x \in \langle a \rangle H$.
Předpokládejme, že $x^p \in \langle a \rangle H$. Pak $x^p = a^r h$ pro nějaké celé číslo r a nějaké $h \in H$. Řád prvku x je roven p^m, kde m je celé číslo, $0 \leq m \leq k$. Pak $x^{pk} = (x^p)^m p^{km} = 1^{p^{km}} = 1$. Platí:

$$1 = (x^p)^{p^{km}} = (a^r)^{p^{km}} = (a^r)^{p^{km}} \cdot h^{p^{km}} = a^{r^{p^{km}}} \cdot h^{p^{km}}.$$

Takže $a^{r^{p^{km}}} = h^{p^{km}}$. Je $a^{r^{p^{km}}} \in \langle a \rangle$, $h^{p^{km}} \in H$ (protože $h \in H$ a H je podgrupa). Pak $a^{r^{p^{km}}} \in \langle a \rangle \cap H$, což dává $a^{r^{p^{km}}} = 1$. Protože prvek a má řád p^k, máme p^k / p^{km} (viz 1.2.13.). Tedy $r = ps$ pro nějaké celé číslo s. Dosazením dostáváme $h = x^p a^{-r} = x^p a^{-ps} = x^p (a^{-s})^p = (xa^{-s})^p$.
Předpokládejme, že $xa^{-s} \in H$. Pak $x = a^s \cdot (xa^{-s}) \in \langle a \rangle H$. Předpokládejme tedy dále, že $xa^{-s} \notin H$. Položme $K = \langle xa^{-s} \rangle$. Pak K je podgrupa grupy G (viz 1.4.20.). Jestliže $w \in H$, pak $w = 1 \cdot w \in \langle xa^{-s} \rangle H = K$. Takže $H \subseteq K$. Je $xa^{-s} = (xa^{-s}) \cdot 1 \in \langle xa^{-s} \rangle H = K$. Takže $H \neq K$. Pak $\text{card}(H) < \text{card}(K)$.
Dle druhé podmínky z vymezení podgrupy H plyne, že $K \cap \langle a \rangle \neq \{1\}$. Existuje tedy prvek $y \in K \cap \langle a \rangle$, $y \neq 1$. Protože $y \in K$, existuje celé číslo t a prvek $w \in H$, $y = (xa^{-s})^t \cdot w$. Protože $y \in \langle a \rangle$, existuje celé číslo u, $y = a^u$. Předpokládejme, že $t = pt$ (t' je celé číslo). Pak

$$(xa^{-s})^t = (xa^{-s})^{pt} = (x^p a^{-sp})^{t'} = (x^p a^{-r})^{t'} \in H,$$

takže $y = (xa^{-s})^t \cdot w \in H$, $a^u \in H$. Jistě $a^u \in \langle a \rangle$, tudiž $a^u \in H \cap \langle a \rangle = \{1\}$, $a^u = 1$. Ovšem $y = a^u$, $y = 1$, spor. Nutně tedy $NSD(p, t) = 1$. Podle 2.2.4. existují celá čísla i, j splňující $ip + jt = 1$. Je

$$x = x^{ip+jt} = x^ip \cdot x^jt = (x^p)^i \cdot (x^t)^j.$$

Uvědomme si, že $\langle a \rangle H$ je podgrupa grupy G (viz 1.4.20.). Předpokládáme, že $x^p \in \langle a \rangle H$. Tudiž $(x^p)^i \in \langle a \rangle H$. Dále, $(xa^{-s})^t = a^u$, $x^i a^{-st}w = a^u$, $x^t = a^{u+st} \cdot w^{-1} \in \langle a \rangle H$. Tudiž $(x^i)^j \in \langle a \rangle H$. Jelikož $x = (x^i)^j \cdot (x^t)^j$, máme $x \in \langle a \rangle H$. Důkaz pomocného tvrzení je ukončen.

Grupa G je komutativní, takže $\langle a \rangle$ a H jsou normální podgrupy grupy G. Jistě $\langle a \rangle \cap H = \{1\}$. Ukážeme, že $\langle a \rangle H = G$.

Inkluze $\langle a \rangle H \subseteq G$ je zřejmá.

Chceme: $G \subseteq \langle a \rangle H$. Buď $g \in G$ libovolný prvek. Pak $g^{p^n} = 1 \in \langle a \rangle H$ (viz 3.1.11.). Nyní opakovaně použijeme naše pomocné tvrzení. Je $(g^{p^{n-1}})^p \in \langle a \rangle H$, takže $g^{p^{n-1}} \in \langle a \rangle H$. A tak dále, až $g \in \langle a \rangle H$ dává $g \in \langle a \rangle H$.

Podle věty 1.5.7. je $G \cong \langle a \rangle \times H$.

Zbývá dokázat, že $\langle a \rangle \neq \{1\}$, $H \neq \{1\}$. Předpokládejme, že $\langle a \rangle = \{1\}$. Pak $a = 1$, $G = \{1\}$, spor. Nutně tedy $\langle a \rangle \neq \{1\}$. Předpokládejme, že $H = \{1\}$. Pak $G \cong \langle a \rangle \times \{1\} \cong \langle a \rangle$. Tudiž grupa G je cyklická, spor. Nutně tedy $H \neq \{1\}$.

Nyní již máme k dispozici popis všech konečných komutativních nerozložitelných grup.

Důkaz.
7.2. POPIS VŠECH KONEČNÝCH KOMUTATIVNÍCH GRUP

1. Předpokládejme, že G je nerozložitelná. Pro důkaz sporem předpokládejme, že G není cyklická p-grupa pro žádné prvočíslo p. Jsou dvě možnosti:

(I) G není p-grupa pro žádné prvočíslo p

(II) G je p-grupa pro nějaké prvočíslo p, avšak G není cyklická

ad (I): Existují navzájem různá prvočísla p_1, \ldots, p_s a kladná celá čísla k_1, \ldots, k_s tak, že $\text{card}(G) = p_1^{k_1} \cdots p_s^{k_s}$. Protože G není p-grupa pro žádné prvočíslo p, je $s \geq 2$. Položme $m = p_1^{k_1}$, $n = p_2^{k_2} \cdots p_s^{k_s}$. Zřejmě m, n jsou celá čísla, $m > 1$, $n > 1$, $\text{NSD}(m, n) = 1$, $\text{card}(G) = mn$.

Podle 7.2.1. je grupa G rozložitelná. Spor.

ad (II): Dle 7.2.2. je G rozložitelná. Spor.

A konečně nyní již máme k dispozici popis všech konečných komutativních grup.

7.2.4. Věta. Nechť G je konečná komutativní grupa, $\text{card}(G) > 1$. Pak existuje kladné celé číslo k, prvočísla p_1, \ldots, p_k (ne nutně různá), kladná celá čísla n_1, \ldots, n_k tak, že

$$G \cong \mathbb{Z}_{p_1^{n_1}} \times \mathbb{Z}_{p_2^{n_2}} \times \cdots \times \mathbb{Z}_{p_k^{n_k}}.$$

Důkaz. Podle věty 7.1.6. existuje kladné celé číslo k a nerozložitelné grupy H_1, H_2, \ldots, H_k takové, že

$$G \cong H_1 \times H_2 \times \cdots \times H_k.$$

Protože G je konečná, jsou grupy H_1, \ldots, H_k konečné. Protože G je komutativní, jsou grupy H_1, \ldots, H_k komutativní (viz 1.5.9.). Podle věty 7.2.3. existují prvočísla p_i (pro $i \in \{1, \ldots, k\}$) a kladná celá čísla n_i tak, že $H_i \cong \mathbb{Z}_{p_i^{n_i}}$. Celkem pak

$$G \cong \mathbb{Z}_{p_1^{n_1}} \times \cdots \times \mathbb{Z}_{p_k^{n_k}}.$$

7.2.5. Poznámka.
1. V rozkladu konečné komutativní grupy G na součin cyklických p-grup, uvedeném ve větě 7.2.4., jsou činitelé určeni jednoznačně až na pořadí. Vyplývá to z věty Krullovy - Schmidtovy (7.1.7.) a z toho, že cyklické p-grupy jsou nerozložitelné (věta 7.2.3.).

2. Pro rozklad konečné komutativní grupy G uvedený ve větě 7.2.4. zřejmě platí $\text{card}(G) = p_1^{n_1} \cdot p_2^{n_2} \cdots p_k^{n_k}$.

Chceme-li tedy najít všechny komutativní grupy řádu n, pak zapíšeme číslo n všemi možnými způsoby ve tvaru

$$ n = p_1^{n_1} \cdot p_2^{n_2} \cdots p_k^{n_k}, $$

kde p_1, p_2, \ldots, p_k jsou prvočísla (ne nutně různá), n_1, n_2, \ldots, n_k jsou kladná celá čísla. Přitom ovšem dva zápisy, které se liší pouze pořadím činitelů, považujeme za stejné.

7.2.6. Příklad. Uvedeme soupis všech komutativních grup řádu 1000. Použijeme větu 7.2.4. Máme tyto možnosti:

1000 = 2 · 2 · 2 · 5 · 5 · 5, tomu odpovídá grupa $\mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_5 \times \mathbb{Z}_5 \times \mathbb{Z}_5$

1000 = 2 · 2 · 2 · 25, tomu odpovídá grupa $\mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_{25}$

1000 = 2 · 2 · 2 · 125, tomu odpovídá grupa $\mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_{125}$

1000 = 2 · 4 · 5 · 5 · 5, tomu odpovídá grupa $\mathbb{Z}_2 \times \mathbb{Z}_4 \times \mathbb{Z}_5 \times \mathbb{Z}_5 \times \mathbb{Z}_5$

1000 = 2 · 4 · 5 · 25, tomu odpovídá grupa $\mathbb{Z}_2 \times \mathbb{Z}_4 \times \mathbb{Z}_5 \times \mathbb{Z}_{25}$

1000 = 2 · 4 · 125, tomu odpovídá grupa $\mathbb{Z}_2 \times \mathbb{Z}_4 \times \mathbb{Z}_{125}$

1000 = 8 · 5 · 5 · 5, tomu odpovídá grupa $\mathbb{Z}_8 \times \mathbb{Z}_5 \times \mathbb{Z}_5 \times \mathbb{Z}_5$

1000 = 8 · 5 · 25, tomu odpovídá grupa $\mathbb{Z}_8 \times \mathbb{Z}_5 \times \mathbb{Z}_{25}$

1000 = 8 · 125, tomu odpovídá grupa $\mathbb{Z}_8 \times \mathbb{Z}_{125}$.

Existuje tedy celkem 9 komutativních grup řádu 1000.

7.2.7. Příklad. Uvedeme soupis všech komutativních grup řádu 2010. Použijeme větu 7.2.4. Je $2010 = 2 \cdot 3 \cdot 5 \cdot 67$, přičemž 2, 3, 5, 67 jsou prvočísla. Existuje tedy jediná komutativní grupa řádu 2010, a to grupa $\mathbb{Z}_2 \times \mathbb{Z}_3 \times \mathbb{Z}_5 \times \mathbb{Z}_{67}$. Samozřejmě, cyklická grupa \mathbb{Z}_{2010} je také komutativní grupa řádu 2010. Proto $\mathbb{Z}_{2010} \cong \mathbb{Z}_2 \times \mathbb{Z}_3 \times \mathbb{Z}_5 \times \mathbb{Z}_{67}$.

7.2.8. Příklad. Kolik existuje komutativních grup řádu 1000000? Je $1000000 = 2^6 \cdot 5^6$. Postupujeme podle poznámky 7.2.5., část druhá. Číslo
7.3. GRUPY MALÝCH ŘÁDŮ

2^6 lze zapsat těmito způsoby:

- 2^6, $2 \cdot 2^5$, $2^2 \cdot 2^4$, $2^3 \cdot 2^3$, $2 \cdot 2^2 \cdot 2^4$, $2 \cdot 2^2 \cdot 2^3$, $2^2 \cdot 2^2 \cdot 2^2$,
- $2 \cdot 2 \cdot 2^3$, $2 \cdot 2^2 \cdot 2^2$, $2 \cdot 2 \cdot 2 \cdot 2^2$, $2 \cdot 2 \cdot 2 \cdot 2 \cdot 2$.

Způsobů je 11. Obdobně, číslo 5^6 lze také zapsat jedenácti způsoby. Počet všech zápisů čísla $2^6 \cdot 5^6$ je tedy $11 \cdot 11 = 121$.

Závěr: Existuje celkem 121 komutativních grup řádu 1000000.

7.3 Grupy malých řádů

V této části podáme úplný přehled všech grup až do řádu 11. Izomorfní grupy budeme, samozřejmě, považovat za stejné.

7.3.1. Tvrzení. Existuje jediná grupa řádu 2, totiž grupa \mathbb{Z}_2.

Důkaz. Tvrzení 4.1.6. pro $p = 2$.

7.3.2. Tvrzení. Existuje jediná grupa řádu 3, totiž grupa \mathbb{Z}_3.

Důkaz. Tvrzení 4.1.6. pro $p = 3$.

7.3.3. Tvrzení. Existují právě dvě grupy řádu 4, toťž grupy \mathbb{Z}_4 a $\mathbb{Z}_2 \times \mathbb{Z}_2$.

7.3.4. Tvrzení. Existuje právě jedna grupa řádu 5, toťž grupa \mathbb{Z}_5.

Důkaz. Tvrzení 4.1.6. pro $p = 5$.

7.3.5. Věta. Nechť p je liché prvočíslo, G je grupa. Jestliže G má řád $2p$, pak G je cyklická nebo dihedrální (tj. $G \cong \mathbb{Z}_{2p} \cong \mathbb{Z}_2 \times \mathbb{Z}_p$ nebo $G \cong D_{2p}$).

Důkaz. Podle Cauchyovy věty (5.2.3.) grupa G obsahuje nějaký prvek s řádu p a nějaký prvek t řádu 2. Podgrupa $\langle s \rangle$ má p prvků, $\langle s \rangle = \{1, s, \ldots, s^{p-1}\}$ (viz 1.4.18.). Prvky t, ts, \ldots, ts^{p-1} jsou navzájem různé. Předpokládejme opak, tj. $0 \leq i < j \leq p - 1$, $ts^i = ts^j$. Pak $t^2s^i = t^2s^j$, $1 \cdot s^i = 1 \cdot s^j$, $s^i = s^j$, spor. Předpokládejme nyní, že existují $i, j \in \{0, \ldots, p - 1\}$ s vlastností $s^i = ts^j$.

Pak \(s^i s^{-j} = ts^i s^{-j}, \ s^{-j} = ts^0, \ s^{-j} = t. \) Takže \(t \in \langle s \rangle. \) Protože řád prvku dělí řád grupy, 2/p. To je spor.
Máme již dokázáno, že
\[
1, s, \ldots, s^{p-1}, t, ts, \ldots, ts^{p-1}
\]
jsou navzájem různé prvky. Jejich počet je \(2p, \) takže
\[
G = \{1, s, \ldots, s^{p-1}, t, ts, \ldots, ts^{p-1}\}.\]

Je zřejmé, že \(G = \langle s, t \rangle. \)
Jistě \(st \in G. \) Jsou dvě možnosti:
(I) \(st = s^i \) pro nějaké \(i \in \{0, \ldots, p-1\} \)
(II) \(st = ts^i \) pro nějaké \(i \in \{0, \ldots, p-1\}. \)
ad (I): \(st = s^i, \) takže \(s^{-1} st = s^{-1} s^i, t = s^{i-1}, t \in \langle s \rangle, \) spor. Vidíme, že
ad (II): \(st = ts^i, \) takže \(tst = t^2 s^i, tst = s^i. \) Případ \(i = 0 \) dává \(tst = 1, \)
\(ttstt = tt, s = 1, \) spor. Tudíž \(i \in \{1, \ldots, p-1\}. \) Je
\[
(tst)^i = \left(\underbrace{(tst)(tst) \cdots (tst)}_i \right)
= tst^2 st^2 \cdots t^2 st
= ts^2 t
= t(tst)t
= t^2 st^2
= s.
\]
Ovšem také \((tst)^i = (s^i)^i = s^{i^2}. \) Pak \(s^{i^2} = s, \ s^{i^2} s^{-1} = ss^{-1}, \ s^{i^2} s^{-1} = 1. \) Protože
prvek \(s \) má řád \(p, \) máme \(p/i^2 - 1 \) (viz 1.2.13.). Tudíž \(p/(i+1) \cdot (i-1). \) Jelikož
\(p \) je prvočíslo, \(p/i + 1 \) nebo \(p/i - 1. \)
Nechť \(p/i + 1. \)
Pak \(i + 1 = kp \) pro nějaké celé číslo \(k. \) Odtud \(i = kp - 1, \)
\[
s^i = s^{kp-1} = s^{kp} \cdot s^{-1} = (s^p)^k \cdot s^{-1} = 1^k \cdot s^{-1} = 1 \cdot s^{-1} = s^{-1}.
\]
Pak \(tst = s^{-1}. \) Shrňme si, co víme: \(G \) je grupa řádu \(2p, \) \(\langle s, t \rangle = G, \ s^p = 1, \)
\(t^2 = 1, \) \(tst = s^{-1}. \) Dle definice 2.6.9. je \(G \cong D_{2p}. \)
Nechť \(p/i - 1 \).
Pak \(i - 1 = kp \) pro nějaké celé číslo \(k \). Odtud \(i = kp + 1 \),
\[
s^i = s^{kp+1} = s^{kp} \cdot s = (s^p)^k \cdot s = 1^k \cdot s = 1 \cdot s = s.
\]
Pak \(tst = s \), \(tst^2 = st \), \(ts = st \). Protože prvky grupy \(G \) jsou tvaru \(t^a s^b \),
kde \(a \in \{0, 1\} \), \(b \in \{0, \ldots, p - 1\} \), lze snadno nahlédnout, že grupa \(G \) je
komutativní. V příkladu 5.2.5. jsme ukázali, že \(G \cong \mathbb{Z}_{2^p} \cong \mathbb{Z}_2 \times \mathbb{Z}_p \).

7.3.6. Tvrzení. Existují právě dvě grupy řádu 6, totiž \(\mathbb{Z}_6 \cong \mathbb{Z}_2 \times \mathbb{Z}_3 \) a
\(D_6 \cong S_3 \).

Důkaz. Viz 7.3.5. pro \(p = 3 \). Označme \(\Delta \) množinu vrcholů rovnostranného
trojúhelníka. Je \(D_6 \cong \text{Sym}(\Delta) \) (viz 2.6.11.). Ovšem \(\text{Sym}(\Delta) = S(\Delta) \cong S_3 \)
(viz 2.6.5.). Takže \(D_6 \cong S_3 \). Grupy \(\mathbb{Z}_6 \) a \(S_3 \) nejsou izomorfní, protože \(\mathbb{Z}_6 \) je
komutativní a \(S_3 \) není komutativní.

7.3.7. Tvrzení. Existuje jediná grupa řádu 7, totiž grupa \(\mathbb{Z}_7 \).

Důkaz. Tvrzení 4.1.6. pro \(p = 7 \).

7.3.8. Tvrzení. Nechť \(G \) je grupa. Jestliže \(a^2 = 1 \) pro každé \(a \in G \), pak \(G \)
je komutativní.

Důkaz. Nechť \(x, y \in G \). Pak \((xy)^2 = 1 \), \(xyxy = 1 \), \(x(xyxy)y = x \cdot 1 \cdot y \),
\(x^2yxy^2 = xy \), \(1 \cdot yx \cdot 1 = xy \), \(yx = xy \).

7.3.9. Tvrzení. Nechť \(G \) je grupa řádu 8. Jestliže \(G \) není komutativní, pak
\(G \cong \mathbb{Q} \) nebo \(G \cong D_8 \).

Důkaz. Buď \(G \) nekomutativní grupa řádu 8. Řád prvku dělí řád grupy
(3.1.10.), takže každý prvek grupy \(G \) má řád 1 (takový prvek existuje právě
den, to je 1), 2, 4, nebo 8. Kdyby grupa \(G \) měla nějaký prvek řádu 8, byla
by \(G \cong \mathbb{Z}_8 \) (dle 4.1.5.), tedy \(G \) by byla komutativní, což by byl spor. Tudíž
každý prvek grupy \(G \) má řád 1, 2 nebo 4. Předpokládejme, že v grupě \(G \)
neexistuje žádný prvek řádu 4. Pak pro každé \(a \in G \) je \(a^2 = 1 \) a podle 7.3.8.
je \(G \) komutativní. To je spor. Dosavadní pozorování shrneme takto:
Každý prvek grupy \(G \) má řád 1, 2 nebo 4, přičemž aspoň jeden prvek má řád
4.
Buď \(a \in G \), a má řád 4. Podgrupa \(\langle a \rangle \) má řád 4, \(\langle a \rangle = \{1, a, a^2, a^3\} \).
Nechť $b \in G$, $b \notin \langle a \rangle$.
Prvky b, ba, ba^2, ba^3 jsou navzájem různé. Předpokládejme opak. Pak existují $0 \leq i < j \leq 3$, $ba^i = ba^j$. Z toho však plyne $a^i = a^j$, což je spor.
Předpokládejme, že $i, j \in \{0, 1, 2, 3\}$, $a^i = ba^j$. Pak $a^i a^{-j} = ba^j a^{-j}$, $a^{i-j} = ba^{j-i}$, $a^{i-j} = ba^0$, $a^{i-j} = b \cdot 1$, $a^{i-j} = b$. Tudíž $b \notin \langle a \rangle$, spor.

Ukážali jsme, že prvky 1, a, a^2, a^3, b, ba, ba^2, ba^3 jsou navzájem různé. Protože těchto prvků je 8 a $\text{card}(G) = 8$, je

$$G = \{1, a, a^2, a^3, b, ba, ba^2, ba^3\}.$$

Všimněme si, že $\langle a, b \rangle = G$.
Předpokládejme, že $b^2 = ba^i$ pro nějaké $i \in \{0, 1, 2, 3\}$. Pak $b = a^i$ (využili jsme zákon o krácení), $b \notin \langle a \rangle$, spor. Nutně tedy $b^2 \notin \{1, a, a^2, a^3\}$. Teoreticky tedy máme 4 možnosti:
(I) $b^2 = 1$
(II) $b^2 = a$
(III) $b^2 = a^2$
(IV) $b^2 = a^3$.

ad (I): Předpokládejme, že $bab = ba^i$ pro nějaké $i \in \{0, 1, 2, 3\}$. Pak $ab = a^i$ (využili jsme zákon o krácení), $a^{-1}ab = a^{-1}a^i$, $b = a^{-1}$, $b \notin \langle a \rangle$, spor. Nutně tedy $bab \in \{1, a, a^2, a^3\}$.
Případ $bab = 1$ dává $b(bab)b = b \cdot 1 \cdot b$, $b^2ab^2 = b^2$, $1 \cdot a \cdot 1 = 1$, $a = 1$, což není pravda.
Případ $bab = a$ dává $bbab = ba$, $b^2ab = ba$, $1 \cdot ab = ba$, $ab = ba$. Prvky grupy G mají tvar b^ia^j, kde $i \in \{0, 1\}$, $j \in \{0, 1, 2, 3\}$. Z $ab = ba$ tudíž plyne, že G je komutativní. To však není pravda.
Případ $bab = a^2$ dává $bab = a^4$, $babab = a^4$, $bab^2ab = 1$, $baab = 1$, $ba^2b = b \cdot 1 \cdot b$, $b^2a^2b^2 = b^2$, $1 \cdot a \cdot 1 = 1$, $a^2 = 1$, což není pravda. Musí tedy být $bab = a^3$. Jelikož $a^4 = 1$, je $a^3 = a^{-1}$.
Zjistili jsme, že v případě (I) platí: $\langle a, b \rangle = G$, $a^4 = 1$, $b^2 = 1$, $bab = a^{-1}$.
Podle definice 2.6.9. je $G \cong D_8$.

ad (II): Je $b \neq 1$, $b^2 \neq 1$. Protože b má řád 1, 2 nebo 4, musí být $b^4 = 1$. Pak ovšem $a^2 = (b^2)^2 = b^4 = 1$, spor. Vidíme, že případ (II) vůbec nenastává.
ad (III): Je $b^4 = (b^2)^2 = (a^2)^2 = a^4 = 1$.
Předpokládejme, že $bab^3 = ba^i$ pro nějaké $i \in \{0, 1, 2, 3\}$. Pak $ab^3 = a^i$ (využili jsme zákon o krácení), $a^{-1}ab^3 = a^{-1}a^i$, $b^3 = a^{i-1}$, $bb^2 = a^{i-1}$, $ba^2 = a^{i-1}$, $ba^2a^2 = a^{i-1}a^{-2}$, $b = a^{-3}$, $b \notin \langle a \rangle$, spor. Nutně tedy $bab^3 \in \{1, a, a^2, a^3\}$.
Případ $bab^3 = 1$ dává $bab^3b = b \cdot b$, $bab^4 = b$, $ba \cdot 1 = b$, $ba = b \cdot 1$, $a = 1$ (využili jsme zákon o krácení), což není pravda.
7.3. GRUPY MALÝCH ŘÁDŮ

Případ \(bab^3 = a \) dává \(bab^3 b = ab, bab^4 = ab, ba \cdot 1 = ab, ba = ab \). Tudíž \(G \) je komutativní. Tato však není pravda.

Případ \(bab^3 = a^2 \) dává \(bab^3 b = a^2 b, bab^4 = b^2 b, ba \cdot 1 = b b^2, ba = b a^2, a = a^2, 1 = a, \) což není pravda.

Musí tedy být \(bab^3 = a^3 \). Jelikož \(a^4 = 1, \) je \(a^3 = a^{-1}. \) Jelikož \(b^4 = 1, \) je \(b^3 = b^{-1}. \)

Zjistili jsme, že v případě (III) platí: \(\langle a, b \rangle = G, a^4 = 1, b^2 = a^2, bab^{-1} = a^{-1}. \)

Podle definice 2.7.1. je \(G \cong Q. \)

ad (IV): Je \(b \neq 1, b^2 \neq 1. \) Protože \(b \) má řád 1, 2 nebo 4, musí být \(b^4 = 1. \)

Pak ovšem \(a^6 = (a^3)^2 = (b^2)^2 = b^4 = 1, a^4 a^2 = 1, 1 \cdot a^2 = 1, a^2 = 1, \) spor.

Vidíme, že případ (IV) vůbec nenastává.

7.3.10. Tvrzení. Existuje právě pět grup řádu 8, totiž \(\mathbb{Z}_8, \mathbb{Z}_2 \times \mathbb{Z}_4, \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2, Q \) a \(D_8. \)

Nejdříve se zabývejme komutativními grupami. Pro každé \(x \in \mathbb{Z}_4 \) je \(4x = 0 \) (viz 3.1.11.). Obdobně, pro každé \(x \in \mathbb{Z}_2 \) je \(2x = 0, 4x = 2(2x) = 0 \).

Grupa \(\mathbb{Z}_8 \) má prvek řádu 8, například je to \(1. \) Pro každé \((a, b) \in \mathbb{Z}_2 \times \mathbb{Z}_4 \) je \(4(a, b) = (4a, 4b) = (0, 0), \) takže každý prvek grupy \(\mathbb{Z}_2 \times \mathbb{Z}_4 \) má řád nejvýše 4.

Tudíž v \(\mathbb{Z}_2 \times \mathbb{Z}_4 \) neexistuje prvek řádu 8, \(\mathbb{Z}_8 \) a \(\mathbb{Z}_2 \times \mathbb{Z}_4 \) nejsou izomorfní. Pro každé \((a, b, c) \in \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2 \) je \(2(a, b, c) = (2a, 2b, 2c) = (0, 0, 0), \) takže každý prvek grupy \(\mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2 \) má řád nejvýše 2. Tudíž v \(\mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2 \) neexistuje prvek řádu 8, \(\mathbb{Z}_8 \) a \(\mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2 \) nejsou izomorfní. Grupa \(\mathbb{Z}_2 \times \mathbb{Z}_4 \) má prvek řádu 4, například \((0, 1). \) Vidíme již, že každý prvek grupy \(\mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2 \) má řád nejvýše 2. Tudíž grupy \(\mathbb{Z}_2 \times \mathbb{Z}_4 \) a \(\mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2 \) nejsou izomorfní.

Zabývejme se nyní nekomutativními grupami, tedy grupami \(Q \) a \(D_8. \) Grupa \(Q \) má právě jeden prvek řádu 2, totiž prvek \(-1. \) Grupa \(D_8 \) má aspoň dva prvky řádu 2, například to jsou prvky \(t \) a \(s^2. \) Tudíž grupy \(Q \) a \(D_8 \) nejsou izomorfní.

Zbývá ještě dokázat, že každá grupa \(G \) řádu 8 je izomorfní jedné z předem uvedených grup.

Jestliže \(G \) je komutativní, pak \(G \cong \mathbb{Z}_8 \) nebo \(G \cong \mathbb{Z}_2 \times \mathbb{Z}_4 \) nebo \(G \cong \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2 \) na základě věty 7.2.4.

Jestliže \(G \) není komutativní, pak \(G \cong Q \) nebo \(G \cong D_8 \) na základě tvrzení 7.3.9.

7.3.11. Věta. Nechť \(p \) je prvočíslo. Existují právě dvě grupy řádu \(p^2, \) totiž
KAPITOLA 7. KONEČNÉ (ZVLÁŠTĚ KOMUTATIVNÍ) GRUPY

grupy \mathbb{Z}_p^2 a $\mathbb{Z}_p \times \mathbb{Z}_p$.

Důkaz. Buď G grupa řádu p^2. Víme, že G je komutativní (viz 5.3.7.). Podle 7.2.4. je $G \cong \mathbb{Z}_p^2$ nebo $G \cong \mathbb{Z}_p \times \mathbb{Z}_p$. Pro každé $x \in \mathbb{Z}_p$ je $px = 0$ (viz 3.1.11.). Buď $(a, b) \in \mathbb{Z}_p \times \mathbb{Z}_p$. Pak $p(a, b) = (pa, pb) = (0, 0)$. Vidíme, že každý prvek grupy $\mathbb{Z}_p \times \mathbb{Z}_p$ má řád nejvýše p. Pak ovšem grupy \mathbb{Z}_p^2 a $\mathbb{Z}_p \times \mathbb{Z}_p$ nejsou izomorfní, jelikož grupa \mathbb{Z}_p^2 obsahuje prvek řádu p^2, například je to prvek 1.

7.3.12. Tvrzení. Existují právě dvě grupy řádu 9, toťž grupy \mathbb{Z}_9 a $\mathbb{Z}_3 \times \mathbb{Z}_3$.

Důkaz. Věta 7.3.11. pro $p = 3$.

7.3.13. Tvrzení. Existují právě dvě grupy řádu 10, toťž grupy $\mathbb{Z}_{10} \cong \mathbb{Z}_2 \times \mathbb{Z}_5$ a D_{10}.

Důkaz. Věta 7.3.5. pro $p = 5$. Grupy \mathbb{Z}_{10} a D_{10} nejsou izomorfní, neboť \mathbb{Z}_{10} je komutativní a D_{10} není komutativní.

Důkaz. Tvrzení 4.1.6. pro $p = 11$.

Nyní již můžeme podat úplný přehled všech grup řádu 1 až 11. Tento přehled je obsahem následující věty.

7.3.15. Věta. Existuje celkem 19 grup řádu 1 až 11. Jsou to následující grupy:

1. grupy řádu 1: $\{1\}$
2. grupy řádu 2: \mathbb{Z}_2
3. grupy řádu 3: \mathbb{Z}_3
4. grupy řádu 4: \mathbb{Z}_4, $\mathbb{Z}_2 \times \mathbb{Z}_2$
5. grupy řádu 5: \mathbb{Z}_5
6. grupy řádu 6: $\mathbb{Z}_6 \cong \mathbb{Z}_2 \times \mathbb{Z}_3$, $D_6 \cong S_3$
7.3. GRUPY MALÝCH ŘÁDŮ

7. grupy řádu 7: \(\mathbb{Z}_7\)

8. grupy řádu 8: \(\mathbb{Z}_8, \mathbb{Z}_2 \times \mathbb{Z}_4, \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2, \mathbb{Q}, D_8\)

9. grupy řádu 9: \(\mathbb{Z}_9, \mathbb{Z}_3 \times \mathbb{Z}_3\)

10. grupy řádu 10: \(\mathbb{Z}_{10} \cong \mathbb{Z}_2 \times \mathbb{Z}_5, D_{10}\)

11. grupy řádu 11: \(\mathbb{Z}_{11}\).

Důkaz. Tvrzení 7.3.1., 7.3.2., 7.3.3., 7.3.4., 7.3.6., 7.3.7., 7.3.10., 7.3.12., 7.3.13., 7.3.14.

7.3.16. Příklad. Určíme všechny grupy řádů 121 a 122.
Je 121 = 11² a 11 je prvočíslo. Podle věty 7.3.11. existují právě dvě grupy řádu 121, a to grupy \(\mathbb{Z}_{121}\) a \(\mathbb{Z}_{11} \times \mathbb{Z}_{11}\).
Je 122 = 2 · 61 a 61 je prvočíslo. Na základě věty 7.3.5. existují právě dvě grupy řádu 122, a to grupy \(\mathbb{Z}_{122} \cong \mathbb{Z}_2 \times \mathbb{Z}_{61}\) a \(D_{122}\).

Na závěr se ještě zmíníme o funkci \(G(n)\). Pro kladné celé číslo \(n\) definujeme \(G(n)\) jako počet všech navzájem neizomorfních grup řádu \(n\). V tabulce jsou uvedeny hodnoty \(G(n)\) pro některá \(n\). Uvedené hodnoty lze nalézt v knize [4] na stranách 85 a 86.
<table>
<thead>
<tr>
<th>n</th>
<th>$\mathcal{G}(n)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>5</td>
</tr>
<tr>
<td>9</td>
<td>2</td>
</tr>
<tr>
<td>10</td>
<td>2</td>
</tr>
<tr>
<td>11</td>
<td>1</td>
</tr>
<tr>
<td>12</td>
<td>5</td>
</tr>
<tr>
<td>13</td>
<td>1</td>
</tr>
<tr>
<td>14</td>
<td>2</td>
</tr>
<tr>
<td>15</td>
<td>1</td>
</tr>
<tr>
<td>16</td>
<td>14</td>
</tr>
<tr>
<td>17</td>
<td>1</td>
</tr>
<tr>
<td>18</td>
<td>5</td>
</tr>
<tr>
<td>19</td>
<td>1</td>
</tr>
<tr>
<td>20</td>
<td>5</td>
</tr>
<tr>
<td>21</td>
<td>2</td>
</tr>
<tr>
<td>22</td>
<td>2</td>
</tr>
<tr>
<td>23</td>
<td>1</td>
</tr>
<tr>
<td>24</td>
<td>15</td>
</tr>
<tr>
<td>25</td>
<td>2</td>
</tr>
<tr>
<td>26</td>
<td>2</td>
</tr>
<tr>
<td>27</td>
<td>5</td>
</tr>
<tr>
<td>28</td>
<td>4</td>
</tr>
<tr>
<td>29</td>
<td>1</td>
</tr>
<tr>
<td>30</td>
<td>4</td>
</tr>
<tr>
<td>31</td>
<td>1</td>
</tr>
<tr>
<td>32</td>
<td>51</td>
</tr>
<tr>
<td>64</td>
<td>267</td>
</tr>
<tr>
<td>128</td>
<td>2328</td>
</tr>
<tr>
<td>256</td>
<td>56092</td>
</tr>
</tbody>
</table>
Část II
Okruhy
Kapitola 8

Základní pojmy teorie okruhů

8.1 Definice okruhu

8.1.1. Definice. Okruh je množina spolu se dvěma binárními operacemi, většinou zvanými sčítání a násobení, přičemž vzhledem ke sčítání se jedná o komutativní grupu a násobení je distributivní vzhledem ke sčítání. Okruh se nazívá **asociativní** (**komutativní, s jednotkovým prvkem**), pokud operace násobení je asociativní (**komutativní, má neutrální prvek***).

8.1.2. Definice. **Obor integrity** je asociativní a komutativní okruh, v němž pro každé dva prvky x, y platí:

Jestliže $x \cdot y = 0$, pak $x = 0$ nebo $y = 0$.

8.1.3. Definice. **Těleso** je aspoň dvouprvkový asociativní okruh s jednotkovým prvkem (označme jej 1), v němž pro každý nenulový prvek x existuje prvek y takový, že $x \cdot y = y \cdot x = 1$. Prvek y se značí x^{-1} nebo $\frac{1}{x}$. Značení je možno zavést, neboť prvek y je určen jednoznačně (nechť $x \cdot z = z \cdot x = 1$; pak $y = y \cdot 1 = y \cdot (x \cdot z) = (y \cdot x) \cdot z = 1 \cdot z = z$). Je-li v tělese násobení komutativní, pak hovoříme o **komutativním tělese**. Protože v tomto textu budeme pracovat výhradně s komutativními tělesy, budeme pro stručnost místo názvu komutativní těleso používat pouze slovo těleso.

129
Nechť R je okruh. Z definice okruhu víme, že množina R spolu s operací sčítání je komutativní grupa. Tuto grupu nazýváme \textit{aditivní grupa okruhu} R.

Číselné množiny S, Z, Q, R, C spolu s operacemi sčítání a násobení jsou komutativní asociativní okruhy. Přitom Z, Q, R, C jsou okruhy s jednotkovým prvkem. Dokonce Z je obor integrity a Q, R, C jsou tělesa. Také pro každé kladné celé číslo m je Z_m komutativní asociativní okruh s jednotkovým prvkem (viz 2.1.8.). Celá následující kapitola tohoto studijního textu je věnována příkladům okruhů.

Při počítání v okruzích budeme dávat operaci násobení před operací sčítání. Jinak řečeno, $(x \cdot y) + z$ budeme většinou zapisovat zkráceně jako $x \cdot y + z$ (pro libovolné prvky x, y, z daného okruhu).

Podobně, $-(x \cdot y)$ budeme většinou zapisovat zkráceně jako $-x \cdot y$ či pouze jako $-xy$.

Následující tvrzení obsahuje základní pravidla pro počítání v okruzích. Tato pravidla budeme potom používat zcela běžně, bez dalšího vysvětlování.

\textbf{8.1.4. Tvrzení.} Nechť R je okruh. Pro všechna $x, y \in R$ platí:

1. $x \cdot 0 = 0 \cdot x = 0$
2. $x \cdot (-y) = (-x) \cdot y = -(x \cdot y)$
3. $(-x) \cdot (-y) = x \cdot y$

\textbf{Důkaz.}

1. Počítejme: $x \cdot 0 + 0 = x \cdot 0 = x \cdot (0 + 0) = x \cdot 0 + x \cdot 0$. Takže $x \cdot 0 + 0 = x \cdot 0 + x \cdot 0$. Použijeme zákon o krácení v aditivní grupě okruhu R a dostaneme $0 = x \cdot 0$. Obdobně lze dokázat vztah $0 \cdot x = 0$.

2. Je třeba ukázat, že $x \cdot (-y) + x \cdot y = 0$ a $(-x) \cdot y + x \cdot y = 0$. Počítejme:
 $x \cdot (-y) + x \cdot y = x \cdot ((-y) + y) = x \cdot 0 = 0$
 $(-x) \cdot y + x \cdot y = ((-x) + x) \cdot y = 0 \cdot y = 0$

 Při výpočtu jsme použili již dokázanou první část tvrzení.

3. Počítejme: $(-x) \cdot (-y) = -(x \cdot (-y)) = -(x \cdot y) = x \cdot y$. Při výpočtu jsme použili dvakrát již dokázanou druhou část tvrzení.
Učiníme ještě jednu úmluvu týkající se značení. Nechť \(x, y\) jsou prvky nějakého okruhu. Pak zápis \(x - y\) bude zkratkou za zápis \(x + (-y)\).

8.1.5. Tvrzení. Nechť \(R\) je okruh, \(x, y, z \in R\). Pak platí:

1. \(x(y - z) = xy - xz, (x - y)z = xz - yz\)
2. \(x - y = 0\) právě tehdy, když \(x = y\).

Důkaz.

1. Z distributivity násobení vzhledem ke sčítání dostaneme
 \[x(y - z) = x(y + (-z)) = xy + x(-z) = xy + (-xz) = xy + (-xz) = xy - xz\]
 Podobně je možno dokázat rovnost \((x - y)z = xz - yz\).

2. Nechť nejprve \(x - y = 0\). Pak \(x + (-y) = 0, (x + (-y)) + y = 0 + y, x + ((-y) + y) = y, x + 0 = y, x = y\).
 Nechť nyní \(x = y\). Pak \(x + (-y) = y + (-y), x - y = 0\).

Víme, že v grupě platí zákony o krácení (viz 1.1.6.). Nechť \(R\) je okruh, \(x, y, z \in R\). Platí tedy: jestliže \(x + y = x + z\), pak \(y = z\).

Jeden ze zákonů o krácení pro operaci násobení by dával: jestliže \(xy = xz\), pak \(y = z\).

Takové pravidlo však neplatí v žádném okruhu s aspoň dvěma prvky. Je-li totiž \(R\) okruh s aspoň dvěma prvky, pak existují \(y, z \in R\), \(y \neq z\), přitom však \(0 \cdot y = 0 = 0 \cdot z\).

Zdá se, že pomocí by mohl předpoklad nenulovosti prvku \(x\) (tedy prvku, kterým krátíme). Ani to však nestačí. Bud \(R\) komutativní asociativní okruh, který není oborem integrity. Existují tedy \(x, y \in R, xy = 0, x \neq 0, y \neq 0\).

Pak \(x \cdot y = x \cdot 0\) (oba součiny mají hodnotu 0), \(x \neq 0\), a přitom \(y \neq 0\). Takže zákon o krácení nenulovým prvkem (pro operaci násobení) neplatí v \(R\).

V oborech integrity však již zákon o krácení nenulovým prvkem platí.

8.1.6. Tvrzení. (zákon o krácení nenulovým prvkem) Nechť \(R\) je obor integrity, \(x, y, z \in R\). Jestliže \(xy = xz\) a \(x \neq 0\), pak \(y = z\).

Důkaz. Nechť \(xy = xz, x \neq 0\). Pak \(xy - xz = 0, x(y - z) = 0\). Protože \(R\) je obor integrity, máme \(x = 0\) nebo \(y - z = 0\). Ovšem \(x \neq 0\), takže \(y - z = 0\). Pak \(y = z\).
Vyjasníme nyní vztah mezi okruhy, obory integrity a tělesy.

8.1.7. Tvrzení.

1. Každé těleso je aspoň dvouprvkový obor integrity s jednotkovým prvkem.

2. Každý obor integrity je komutativní asociativní okruh.

Důkaz.

1. Nechť T je těleso. Z definice tělesa ihned vyplývá, že T je aspoň dvouprvkový asociativní a komutativní okruh s jednotkovým prvkem. Zbývá ukázat, že pro všechna $x, y \in T$ platí: jestliže $xy = 0$, pak $x = 0$ nebo $y = 0$. Nechť $x, y \in T$, $xy = 0$. V případě $x = 0$ jsme hotovi. Buď tedy $x \neq 0$. Uvědomme si, že v T existuje prvek x^{-1}. Protože $xy = 0$, je $x^{-1} \cdot (xy) = x^{-1} \cdot 0$, $(x^{-1} \cdot x)y = 0$, $1 \cdot y = 0$, $y = 0$.

2. Tvrzení plyne ihned z definice oboru integrity.

Následující poznámku lze chápat jako doplněk Tvrzení 8.1.7.

8.1.8. Poznámka.

1. Existuje těleso, například \mathbb{Q}.

2. Existuje nějaký aspoň dvouprvkový obor integrity s jednotkovým prvkem, který není těleso. Je to například obor integrity \mathbb{Z}.

3. Existuje komutativní asociativní okruh, který není obor integrity. Je to například okruh \mathbb{Z}_6. Dle 2.1.6. množina \mathbb{Z}_6 má přesně 6 prvků, totož $0, 1, 2, 3, 4, 5$. Dle 2.1.8. \mathbb{Z}_6 je komutativní asociativní okruh s jednotkovým prvkem 1. Přitom $\bar{2} \neq \bar{0}, \bar{3} \neq \bar{0}, \bar{2} \cdot \bar{3} = \bar{2} \cdot \bar{3} = \bar{0} = \bar{0}$, takže \mathbb{Z}_6 není obor integrity.

4. Existuje algebraická struktura se dvěma binárními operacemi, která není okruh. Je to například množina \mathbb{N} s operacemi sčítání a násobení. Zdůvodnění: Předpokládejme, že operace sčítání na množině \mathbb{N} má neutrální prvek e. Pak $e + e = e$, což dává $e = 0$, takže $0 \in \mathbb{N}$, spor. Tudíž operace sčítání na množině \mathbb{N} nemá neutrální prvek a tedy \mathbb{N} s operací...
sčítání není grupa. Operace násobení na množině \(\mathbb{N} \) má neutrální prvek 1. Předpokládejme, že množina \(\mathbb{N} \) s operací násobení je grupa. Pak k číslu 2 existuje prvek inverzní, neboli existuje přirozené číslo \(x \) takové, že \(2x = 1 \). Takže 1 je sudé číslo, spor. Těží \(\mathbb{N} \) s operací násobení není grupa. Protože množina \(\mathbb{N} \) není grupa ani s operací sčítání, ani s operací násobení, není \(\mathbb{N} \) okruh.

Třídu všech těles označme \(T \), třídu všech oborů integrity označme \(I \), třídu všech okruhů označme \(R \) a třídu všech algebraických struktur se dvěma binárními operacemi označme \(A \). Z 8.1.7. a 8.1.8. dostáváme:

\[
\emptyset \neq T \subset I \subset R \subset A
\]

\(Q \in T, \ Z \in I - T, \ Z_6 \in R - I, \ N \in A - R. \)

Je zajímavé, že pro konečné obory integrity obrácením první části Tvrzení 8.1.7. dostáváme pravdivý výrok. Platí totiž

Důkaz. Nechť \(I \) je konečný obor integrity s jednotkovým prvkem, \(\text{card}(I) = n, \) \(n \) je celé číslo, \(n \geq 2 \). Z definice oboru integrity plyne, že \(I \) je asociativní a komutativní okruh. Zbývá ukázat, že pro každé \(x \in I, \ x \neq 0, \) existuje \(y \in I, \ xy = 1.\) Nechť \(I = \{a_1, a_2, \ldots, a_n\}. \) Zvolme libovolně \(x \in I, \ x \neq 0, \) a uvažme množinu \(J = \{xa_1, xa_2, \ldots, xa_n\}. \) Zřejmě \(J \subseteq I. \) Ukážeme, že \(\text{card}(J) = n. \) Zřejmě \(\text{card}(J) \leq n. \) Předpokládejme, že \(\text{card}(J) \neq n. \) Pak existují \(k, l \in \{1, 2, \ldots, n\}, \ k \neq l, \ xa_k = xa_l. \) Zákon o krácení nemulovým prvkem dává \(a_k = a_l. \) Pak ovšem \(\text{card}(I) < n, \) spor. Nutně tedy \(\text{card}(J) = n. \) Shrňme to, co již víme: \(\text{card}(I) = n, \ J \subseteq I, \ \text{card}(J) = n. \) Z toho plyne, že \(J = I. \) Je \(1 \in I, \) takže \(1 \in J. \) Pak ovšem \(1 = xa_p \) pro nějaké \(p \in \{1, 2, \ldots, n\}. \) Stačí položit \(y = a_p. \)

8.2 Homomorfismy

8.2.1. Definice. Nechť \(R_1, \ R_2 \) jsou okruhy, \(\varphi : R_1 \rightarrow R_2. \) Zobrazení \(\varphi \) se nazývá homomorfismus okruhu \(R_1 \) do okruhu \(R_2, \) pokud pro všechna
x, y ∈ R_1 platí
\[\varphi(x + y) = \varphi(x) + \varphi(y), \quad \varphi(x \cdot y) = \varphi(x) \cdot \varphi(y). \]

Všimněme si, že homomorfismus okruhu R_1 do okruhu R_2 je také homomorfismus aditivní grupy okruhu R_1 do aditivní grupy okruhu R_2. Jak ukazuje následující příklad, opak platit nemusí.

8.2.2. Příklad. Nechť \(\varphi : \mathbb{Z} \to \mathbb{S} \), \(\varphi(x) = 4x \) pro všechna \(x \in \mathbb{Z} \). Pro libovolné \(x, y \in \mathbb{Z} \) je \(\varphi(x + y) = 4(x + y) = 4x + 4y = \varphi(x) + \varphi(y) \), takže \(\varphi \) je homomorfismus aditivní grupy okruhu \(\mathbb{Z} \) do aditivní grupy okruhu \(\mathbb{S} \). Avšak \(\varphi \) není homomorfismus okruhu \(\mathbb{Z} \) do okruhu \(\mathbb{S} \), protože například \(\varphi(2 \cdot 3) = \varphi(6) = 4 \cdot 6 = 24 \), \(\varphi(2) \cdot \varphi(3) = (4 \cdot 2) \cdot (4 \cdot 3) = 8 \cdot 12 = 96 \).

8.2.3. Příklad. Nechť \(m \) je kladné celé číslo, \(\varphi : \mathbb{Z} \to \mathbb{Z}_m \), \(\varphi(x) = x \) pro všechna \(x \in \mathbb{Z} \). Pro libovolné \(x, y \in \mathbb{Z} \) je
\[\varphi(x + y) = x + x' = x + \varphi(x) + \varphi(y) \]
\[\varphi(x \cdot y) = x \cdot y = \varphi(x) \cdot \varphi(y) \]
a tedy \(\varphi \) je homomorfismus okruhu \(\mathbb{Z} \) na okruh \(\mathbb{Z}_m \) (zobrazení \(\varphi \) je surjektivní, jak ihned vidíme z rovnosti \(\mathbb{Z}_m = \{0, 1, \ldots, m-1\} \) - viz 2.1.6.).

8.2.4. Příklad. Nechť \(R_1, R_2 \) jsou okruhy. Definujme zobrazení \(\varphi : R_1 \to R_2 \) předpisem \(\varphi(x) = 0 \) pro všechna \(x \in R_1 \). Pak \(\varphi \) je homomorfismus, jak se lze snadno přesvědčit. Tento homomorfismus \(\varphi \) nazýváme nulový (nebo také triviální), ostatní homomorfsy jsou nenulové (netriviální).

8.2.5. Tvrzení. Nechť \(R_1 \) je okruh s jednotkovým prvkem, \(R_2 \) je okruh, \(\varphi : R_1 \to R_2 \) je homomorfismus. Platí: homomorfismus \(\varphi \) je nulový právě tehdy, když \(\varphi(1) = 0 \).

Důkaz. Jestliže \(\varphi \) je nulový, pak jistě \(\varphi(1) = 0 \). Naopak, nechť \(\varphi(1) = 0 \). Ukážeme, že \(\varphi \) je nulový. Zvolme libovolné \(x \in R_1 \) a počítejme:
\[\varphi(x) = \varphi(x \cdot 1) = \varphi(x) \cdot \varphi(1) = \varphi(x) \cdot 0 = 0. \]

8.2.6. Tvrzení. Nechť \(R_1, R_2 \) jsou okruhy, \(\varphi : R_1 \to R_2 \) je homomorfismus. Platí:
8.2. HOMOMORFISMY

1. \(\varphi(0) = 0\)

2. \(\varphi(-x) = -\varphi(x)\) (pro libovolné \(x \in R_1\)).

Důkaz. Stačí si uvědomit, že \(\varphi\) je homomorfismus aditivní grupy okruhu \(R_1\) do aditivní grupy okruhu \(R_2\) a použít Tvrzení 1.3.2.

Nechť \(R_1, R_2\) jsou okruhy s jednotkovým prvkem, \(\varphi : R_1 \rightarrow R_2\) je homomorfismus. Možná bychom očekávali, že bude \(\varphi(1) = 1\). Toto očekávání je nereálné, jak ukazuje případ nulového homomorfismu. Dokonce však i v případě nenulového homomorfismu \(\varphi\) může být \(\varphi(1) \neq 1\).

8.2.7. Příklad. Uvažme okruh \(\mathbb{Z}_6\) s jednotkovým prvkem 1 a zobrazení \(\varphi : \mathbb{Z}_6 \rightarrow \mathbb{Z}_6\) dané předpisem \(\varphi(x) = 3 \cdot x\) (pro libovolné \(x \in \mathbb{Z}_6\)). Ukážeme, že \(\varphi\) je homomorfismus okruhů. Zvolme libovolně \(x, y \in \mathbb{Z}_6\) a počítejme:

\[
\varphi(x + y) = 3 \cdot (x + y) = 3 \cdot x + 3 \cdot y = \varphi(x) + \varphi(y),
\]

\[
\varphi(xy) = 3 \cdot (xy) = 9 \cdot x \cdot y = 3 \cdot 3 \cdot x \cdot y = 3 \cdot 3 \cdot x \cdot 3 \cdot y = \varphi(x) \cdot \varphi(y)
\]

(při výpočtu jsme použili fakt, že 3 \(\equiv 9\) (6), což dává 3 \(\equiv 9\) v \(\mathbb{Z}_6\)).

Je \(\varphi(\overline{1}) = 3 \cdot \overline{1} = 3 \cdot \overline{1} = \overline{3} \neq \overline{0}\), takže homomorfismus \(\varphi\) není nulový. Rovnost \(\varphi(\overline{1}) = \overline{3}\) také dává \(\varphi(\overline{1}) \neq \overline{1}\).

V případě dvou oborů integrity s jednotkovým prvkem a nenulového homomorfismu prvního oboru integrity do druhého oboru integrity však již konečně platí, že obrazem jednotkového prvku je jednotkový prvek,

8.2.8. Tvrzení. Nechť \(I_1, I_2\) jsou obory integrity s jednotkovým prvkem a \(\varphi : I_1 \rightarrow I_2\) je nenulový homomorfismus. Pak \(\varphi(1) = 1\).

Důkaz. Protože homomorfismus \(\varphi\) je nenulový, je \(\varphi(1) \neq 0\) (viz Tvrzení 8.2.5.). Dále, \(\varphi(1) \cdot 1 = \varphi(1) = \varphi(1 \cdot 1) = \varphi(1) \cdot \varphi(1)\), takže \(\varphi(1) \cdot 1 = \varphi(1) \cdot \varphi(1)\). Použitím zákona o krácení nenulovým prvkem, konkrétně budeme krátit prvkem \(\varphi(1)\), dostaneme \(1 = \varphi(1)\).

8.2.9. Tvrzení. Nechť \(T_1, T_2\) jsou tělesa, \(\varphi : T_1 \rightarrow T_2\) je nenulový homomorfismus. Pak platí:

1. \(\varphi(0) = 0\)

2. \(\varphi(-x) = -\varphi(x)\) (pro libovolné \(x \in T_1\))
KAPITOLA 8. ZÁKLADNÍ POJMY TEORIE OKRUHŮ

3. \(\varphi(1) = 1 \)

4. Jestliže \(x \neq 0 \), pak \(\varphi(x) \neq 0 \) a \(\varphi(x^{-1}) = \varphi(x)^{-1} \) (pro libovolné \(x \in T_1 \)).

DŮKAZ.

1. viz Tvrzení 8.2.6.

2. viz Tvrzení 8.2.6.

3. viz Tvrzení 8.2.8. (je důležité si uvědomit, že každé těleso je obor integrit s jednotkovým prvkem)

4. Nechť \(x \in T_1, x \neq 0 \). Předpokládejme, že \(\varphi(x) = 0 \). Pak
 \(\varphi(1) = \varphi(x \cdot x^{-1}) = \varphi(x) \cdot \varphi(x^{-1}) = 0 \cdot \varphi(x^{-1}) = 0 \), takže \(\varphi(1) = 0 \), což dle Tvrzení 8.2.5. znamená, že homomorfismus \(\varphi \) je nulový. To je spor. Nutně tedy \(\varphi(x) \neq 0 \). Víme již, že \(\varphi(1) = 1 \). Toho využijeme v následujícím výpočtu. Platí:
 \[\varphi(x^{-1}) = \varphi(x) \cdot \varphi(1) = \varphi(x)^{-1} \cdot \varphi(1) = \varphi(x)^{-1} \cdot 1 = \varphi(x)^{-1} \]

8.2.10. Tvrzení. Nechť \(R_1, R_2, R_3 \) jsou okruhy, \(\varphi : R_1 \rightarrow R_2 \) je homomorfismus, \(\psi : R_2 \rightarrow R_3 \) je homomorfismus. Potom \(\varphi \psi : R_1 \rightarrow R_3 \) je homomorfismus.

DŮKAZ. Nechť \(x, y \in R_1 \). Počítejme:
 \[(\varphi \psi)(x + y) = \psi(\varphi(x + y)) = \psi(\varphi(x) + \varphi(y)) = \psi(\varphi(x)) + \psi(\varphi(y)) = (\varphi \psi)(x) + (\varphi \psi)(y), \]
 \[(\varphi \psi)(x \cdot y) = \psi(\varphi(x \cdot y)) = \psi(\varphi(x) \cdot \varphi(y)) = \psi(\varphi(x)) \cdot \psi(\varphi(y)) = (\varphi \psi)(x) \cdot (\varphi \psi)(y). \]

Zabývejme se nyní otázkou, jak formalizovat naší představu, že dva okruhy \(R_1 \) a \(R_2 \) jsou v podstatě stejné.

Nechť okruhy \(R_1 \) a \(R_2 \) jsou v podstatě stejné. Pak by mělo existovat vzájemně jednoznačné zobrazení \(\varphi : R_1 \rightarrow R_2 \) takové, že pro všechna \(x, y, u, v \in R_1 \) platí:
 \[x + y = u \land x \cdot y = v \implies \varphi(x) + \varphi(y) = \varphi(u) \land \varphi(x) \cdot \varphi(y) = \varphi(v). \]
8.2. HOMOMORFISMY

Tedy sčítání a násobení v R_2 prostřednictvím vzájemně jednoznačného zobrazení φ koresponduje se sčítáním a násobením v R_1. V takovém případě zvolme libovolná $x, y \in R_1$, označme $x + y$ jako u a označme $x \cdot y$ jako v. Pak

$$
\varphi(x + y) = \varphi(u) = \varphi(x) + \varphi(y), \quad \varphi(x \cdot y) = \varphi(v) = \varphi(x) \cdot \varphi(y).
$$

Nyní již vyslovíme formální definici toho, že okruhy R_1 a R_2 jsou v podstatě stejné. Místo slovního obratu ”jsou v podstatě stejné” použijeme slovní obrat ”jsou izomorfní”.

8.2.11. Definice. Nechť R_1, R_2 jsou okruhy. Říkáme, že okruhy R_1, R_2 jsou izomorfní, pokud existuje bijekce $\varphi : R_1 \rightarrow R_2$ splňující

$$
\varphi(x + y) = \varphi(x) + \varphi(y), \quad \varphi(x \cdot y) = \varphi(x) \cdot \varphi(y)
$$

pro všechna $x, y \in R_1$. To, že okruhy R_1, R_2 jsou izomorfní, zapisujeme symbolicky $R_1 \cong R_2$. Zobrazení φ nazýváme izomorfismus okruhu R_1 na okruh R_2. (Všimněme si, že izomorfismus je totéž, co bijektivní homomorfismus.)

8.2.12. Tvrzení. Nechť R je okruh. Zobrazení $id : R \rightarrow R$ dané předpisem $id(x) = x$ pro každé $x \in R$, je izomorfismus.

DŮKAZ. Důkaz přenecháváme čtenáři.

8.2.13. Tvrzení. Nechť R_1, R_2 jsou okruhy, $\varphi : R_1 \rightarrow R_2$ je izomorfismus. Pak $\varphi^{-1} : R_2 \rightarrow R_1$ je izomorfismus.

DŮKAZ. Ze základů matematiky víme, že $\varphi^{-1} : R_2 \rightarrow R_1$ je bijekce. Zvolme $x, y \in R_2$. Chceme: $\varphi^{-1}(x + y) = \varphi^{-1}(x) + \varphi^{-1}(y)$ a $\varphi^{-1}(x \cdot y) = \varphi^{-1}(x) \cdot \varphi^{-1}(y)$. Protože zobrazení φ je prosté, tak stačí ukázat, že $\varphi(\varphi^{-1}(x + y)) = \varphi(\varphi^{-1}(x) + \varphi^{-1}(y))$ a $\varphi(\varphi^{-1}(x \cdot y)) = \varphi(\varphi^{-1}(x) \cdot \varphi^{-1}(y))$. Ovšem

$$
\varphi(\varphi^{-1}(x + y)) = x + y,
\varphi(\varphi^{-1}(x) + \varphi^{-1}(y)) = \varphi(\varphi^{-1}(x)) + \varphi(\varphi^{-1}(y)) = x + y,
\varphi(\varphi^{-1}(x \cdot y)) = x \cdot y,
\varphi(\varphi^{-1}(x) \cdot \varphi^{-1}(y)) = \varphi(\varphi^{-1}(x)) \cdot \varphi(\varphi^{-1}(y)) = x \cdot y.
$$

8.2.14. Tvrzení. Nechť R_1, R_2, R_3 jsou okruhy, $\varphi : R_1 \rightarrow R_2$ je izomorfismus, $\psi : R_2 \rightarrow R_3$ je izomorfismus. Pak $\varphi \psi : R_1 \rightarrow R_3$ je izomorfismus.
Důkaz. Ze základů matematiky víme, že \(\varphi \psi \) je bijekce. Pak stačí použít tvrzení 8.2.10.

8.2.15. Tvrzení. Nechť \(R \) je okruh. Pak \(R \cong R \).

Důkaz. Důkaz přenecháváme čtenáři.

8.2.16. Tvrzení. Nechť \(R_1, R_2 \) jsou okruhy. Jestliže \(R_1 \cong R_2 \), pak \(R_2 \cong R_1 \).

Důkaz. Důkaz přenecháváme čtenáři.

8.2.17. Tvrzení. Nechť \(R_1, R_2, R_3 \) jsou okruhy. Jestliže \(R_1 \cong R_2 \) a \(R_2 \cong R_3 \), pak \(R_1 \cong R_3 \).

Důkaz. Důkaz přenecháváme čtenáři.

8.2.18. Příklad. Uvažme zobrazení \(\varphi : \mathbb{C} \to \mathbb{C} \) dané předpisem \(\varphi(a + bi) = a - bi \) \((a, b \text{ jsou reálná čísla})\). Ukážeme, že \(\varphi \) je homomorfismus tělesa \(\mathbb{C} \) na těleso \(\mathbb{C} \). Nejdříve ukážeme, že \(\varphi \) je homomorfismus. Nechť \(a, b, c, d \) jsou reálná čísla.

Počítejme:
\[
\varphi((a + bi) + (c + di)) = \varphi((a + c) + (b + d)i) = (a + c) - (b + d)i = (a - b) + (c - d)i = \varphi(a + bi) + \varphi(c + di),
\]
\[
\varphi((a + bi) \cdot (c + di)) = \varphi((ac - bd) + (ad + bc)i) = (ac - bd) - (ad + bc)i = (a - b)i \cdot (c - d)i = \varphi(a + bi) \cdot \varphi(c + di).
\]

Přesvědčíme se ještě, že \(\varphi \) je bijekce.

\(\varphi \) je injekce: Nechť \(a, b, c, d \) jsou reálná čísla, \(\varphi(a + bi) = \varphi(c + di) \). Chceme: \(a + bi = c + di \). Víme, že \(a - bi = c - di \), \(a + (b)i = c + (d)i \). Pak \(a = c, -b = -d, b = d \), takže \(a + bi = c + di \).

\(\varphi \) je surjekce: Nechť \(c, d \) jsou reálná čísla. Hledáme reálná čísla \(a, b \) taková, že \(\varphi(a + bi) = c + di \). Položíme \(a = c, b = -d \). Pak \(\varphi(a + bi) = a - bi = a + (b)i = c + di \).

8.2.19. Příklad. Najdeme všechny izomorfismy \(\psi : \mathbb{C} \to \mathbb{C} \) takové, že \(\psi(r) = r \) pro každé reálné číslo \(r \). Buď tedy \(\psi \) nějaký takový izomorfismus. Nechť \(a, b \) jsou reálná čísla. Pak
\[
\psi(a + bi) = \psi(a) + \psi(b) \cdot \psi(i) = a + b \cdot \psi(i).
\]
8.3. PODOKRUHY A IDEÁLY

Vidíme, že k určení izomorfismu \(\psi \) je podstatné znát hodnotu \(\psi(i) \). Nechť \(\psi(i) = x + yi \), kde \(x, y \) jsou reálná čísla. Pak

\[
-1 = \psi(-1) = \psi(i^2) = (\psi(i))^2 = (x + yi)^2 = (x^2 - y^2) + 2xyi,
\]

\[
-1 + 0 \cdot i = (x^2 - y^2) + 2xyi.
\]

Z toho dostáváme: \(x^2 - y^2 = -1 \), \(2xy = 0 \).

Jelikož \(2xy = 0 \), je \(x = 0 \) nebo \(y = 0 \). Případ \(y = 0 \) dává \(x^2 = -1 \), což nelze (\(x \) je reálné číslo, takže \(x^2 \geq 0 \)). Nutně tedy \(x = 0 \). Pak \(-y^2 = -1 \), \(y^2 = 1 \). Jsou dvě možnosti: \(y = 1 \) nebo \(y = -1 \). Postupně obě možnosti probereme.

1. \(y = 1 \): Je \(\psi(i) = 0 + 1 \cdot i = i \), takže

\[
\psi(a + bi) = a + bi
\]

(pro libovolná reálná čísla \(a, b \)). Je tedy \(\psi \) izomorfismus \(id \) z tvrzení 8.2.12.

2. \(y = -1 \): Je \(\psi(i) = 0 + (-1) \cdot i = -i \), takže

\[
\psi(a + bi) = a + b \cdot (-i) = a - bi
\]

(pro libovolná reálná čísla \(a, b \)). Je tedy \(\psi \) roven izomorfismu \(\varphi \) z příkladu 8.2.18.

Závěr: Existují právě dva izomorfismy \(\psi : \mathbb{C} \to \mathbb{C} \) takové, že \(\psi(r) = r \) pro každé reálné číslo \(r \). Jsou to izomorfismy

\[
\psi_1(a + bi) = a + bi, \quad \psi_2(a + bi) = a - bi
\]

(\(a, b \) jsou libovolná reálná čísla).

8.3 Podokruhy a ideály

Nechť \(R \) je okruh. Operaci sčítání v okruhu \(R \) označme + a operaci násobení v okruhu \(R \) označme \(\cdot \). Nechť \(S \subseteq R \). Pokusíme se zformulovat nutné a po-
stačující podmínky, jejichž splnění znamená, že množina \(S \) spolu s operacemi + a \(\cdot \) je okruh (právě v takovém případě budeme \(S \) považovat za podokruh okruhu \(R \)).

Předpokládejme nejprve, že množina \(S \) spolu s operacemi + a \(\cdot \) je okruh.
Jsou + a · operace na množině S, takže pro všechna x, y ∈ S máme x + y ∈ S, x · y ∈ S.

Dále, množina S s operací + je komutativní grupa. Existuje prvek e ∈ S splňující e + x = x pro každé x ∈ S. Pak e + e = e (sčítáme v S) a e + 0 = e (sčítáme v R a využíváme toho, že 0 je neutrální prvek operace sčítání v okruhu R). Dostáváme e + e = e + 0 a po krácení v aditivní grupě okruhu R máme e + 0 = e. Pak e + e = e.

Platí tedy:
1. pro všechna x, y ∈ S je x + y ∈ S a x · y ∈ S
2. 0 ∈ S
3. pro všechna x ∈ S je −x ∈ S.

Předpokládejme nyní, že právě zformulované podmínky 1,2 a 3 jsou splněny. Ukážeme, že množina S spolu s operacemi + a · je okruh.

Plnění podmínky 1 zajišťuje, že + a · jsou operace na množině S. Nejdříve ukážeme, že S spolu s operací + je komutativní grupa. Pro libovolné prvky x, y, z ∈ R je x + (y + z) = (x + y) + z, x + y = y + x, x + 0 = x, x + (−x) = 0. Jelikož S ⊆ R, platí uvedené rovnosti také pro libovolná x, y, z ∈ S. Tedy: operace + je asociativní a komutativní na množině S, 0 je neutrální prvek operace + na množině S (zde je důležité, že 0 ∈ S dle podmínky 2), ke každému prvku množiny S existuje v množině S prvek opačný (zde je důležité, že −x ∈ S pro každé x ∈ S dle podmínky 3).

Zbývá ukázat, že na množině S je operace · distributivní vzhledem k operaci +. Pro všechna x, y, z ∈ R je x · (y + z) = x · y + x · z a (y + z) · x = y · x + z · x. Protože S ⊆ R, platí uvedená rovnost také pro všechna x, y, z ∈ S.

Nyní je snad již dostatečně vysvětleno, proč následující definice dobře popisuje naše chápaní pojmu podokruh okruhu, tedy že podokruhem okruhu R jsou právě ty podmnožiny S množiny R, které jsou samy okruhem, pokud pro prvky množiny S je jejich součet (součin) roven součtu (součinu) v okruhu R.

8.3.1. Definice. Nechť R je okruh, S ⊆ R. Pak S se nazývá podokruh okruhu R, platí-li
8.3. PODOKRUHY A IDEÁLY

1. pro všechna \(x, y \in S \) je \(x + y \in S \) a \(x \cdot y \in S \)

2. \(0 \in S \)

3. pro všechna \(x \in S \) je \(-x \in S \).

8.3.2. Příklady.

1. Nechť \(R \) je libovolný okruh. Pak \(\{0\} \) a \(R \) jsou podokruhy okruhu \(R \).

2. \(Z \) je podokruhem tělesa \(\mathbb{Q} \) (uvažujeme obvyklé operace sčítání a násobení čísel); tento příklad ukazuje, že podokruh tělesa nemusí být těleso.

3. \(S \) je podokruhem okruhu \(Z \); tento příklad ukazuje, že podokruh okruhu s jednotkovým prvkem nemusí být okruh s jednotkovým prvkem.

8.3.3. Tvrzení. Nechť \(R \) je okruh, \(S \) je podokruh okruhu \(R \). Platí:

1. Jestliže \(R \) je asociativní, pak také \(S \) je asociativní.

2. Jestliže \(R \) je komutativní, pak také \(S \) je komutativní.

3. Jestliže \(R \) je obor integrity, pak také \(S \) je obor integrity.

Důkaz. Dokážeme pouze část 1, zbytek důkazu je obdobný a čtenář si jej snadno udělá sám. Předpokládejme, že okruh \(R \) je asociativní. Pro všechna \(x, y, z \in R \) je \(x(yz) = (xy)z \). Samozřejmě také \(x(yz) = (xy)z \) pro všechna \(x, y, z \in S \), protože \(S \subseteq R \) a součin libovolných dvou prvků v \(S \) je roven jejich součinu v \(R \).

8.3.4. Tvrzení. Nechť \(R \) je okruh, \(S_1, S_2 \) jsou podokruhy okruhu \(R \). Pak \(S_1 \cap S_2 \) je podokruh okruhu \(R \).

Důkaz. Je třeba dokázat následující:

(I) pro všechna \(x, y \in S_1 \cap S_2 \) je \(x + y \in S_1 \cap S_2 \) a \(xy \in S_1 \cap S_2 \)

(II) \(0 \in S_1 \cap S_2 \)

(III) pro všechna \(x \in S_1 \cap S_2 \) je \(-x \in S_1 \cap S_2 \)

ad (I): Nechť \(x, y \in S_1 \cap S_2 \). Je \(x, y \in S_1 \) a \(x, y \in S_2 \). Protože \(S_1 \) je podokruh okruhu \(R \), je \(x + y \in S_1 \) a \(xy \in S_1 \). Protože \(S_2 \) je podokruh okruhu \(R \), je \(x + y \in S_2 \) a \(xy \in S_2 \). Z \(x + y \in S_1 \) a \(x + y \in S_2 \) dostáváme \(x + y \in S_1 \cap S_2 \),
KAPITOLA 8. ZÁKLADNÍ POJMY TEORIE OKRUHŮ

z $xy \in S_1$ a $xy \in S_2$ dostáváme $xy \in S_1 \cap S_2$.

ad (II): Jelikož S_1 je podokruh okruhu R, je $0 \in S_1$. Jelikož S_2 je podokruh okruhu R, je $0 \in S_2$. Celkem: $0 \in S_1 \cap S_2$.

ad (III): Nechť $x \in S_1 \cap S_2$. Pak $x \in S_1$ a $x \in S_2$. Protože S_1 je podokruh okruhu R, je $-x \in S_1$. Protože S_2 je podokruh okruhu R, je $-x \in S_2$. Celkem: $-x \in S_1 \cap S_2$.

8.3.5. Tvrzení. Nechť R je okruh, S_i pro $i \in I$ ($I \neq \emptyset$) jsou podokruhy okruhu R. Pak $\bigcap_{i \in I} S_i$ je podokruh okruhu R.

Důkaz. Důkaz přenecháváme čtenáři.

8.3.6. Definice. Nechť R je okruh a $M \subseteq R$. Pak S se nazývá podokruh okruhu R generovaný množinou M, jsou-li splněny následující tři podmínky:

1. S je podokruh okruhu R
2. $M \subseteq S$
3. pro všechna K platí: jestliže K je podokruh okruhu R a $M \subseteq K$, pak $S \subseteq K$.

8.3.7. Tvrzení. Nechť R je okruh a $M \subseteq R$. Pak podokruh okruhu R generovaný množinou M existuje a je určen jednoznačně.

Důkaz. Existence:
Nechť S_i, pro $i \in I$, je systém všech podokruhů okruhu R obsahujících množinu M. Je $I \neq \emptyset$, protože R je podokruh okruhu R a $M \subseteq R$. Položme $S = \bigcap_{i \in I} S_i$. Ukážeme, že S splňuje podmínky z definice 8.3.6.

ad 1: S je podokruh okruhu R dle 8.3.5.

ad 2: Chceme: $M \subseteq S$. Pro každé $i \in I$ je $M \subseteq S_i$, takže $M \subseteq \bigcap_{i \in I} S_i = S$.

ad 3: Nechť K je podokruh okruhu R, $M \subseteq K$. Chceme: $S \subseteq K$. Protože S_i,
8.3. PODOKRUHY A IDEÁLY

pro $i \in I$, je systém všech podokruhů okruhu R obsahujících M, musí být $K = S_j$ pro nějaké $j \in I$. Pak $\bigcap_{i \in I} S_i \subseteq S_j$, $S \subseteq K$.

Jednoznačnost:
Nechť S, S' jsou podokruhy okruhu R generované množinou M. Chceme: $S = S'$. Platí:
1: S je podokruh okruhu R
2: $M \subseteq S$
3: pro všechna K platí: jestliže K je podokruh okruhu R a $M \subseteq K$, pak $S \subseteq K$.

1': S' je podokruh okruhu R
2': $M \subseteq S'$
3': pro všechna K platí: jestliže K je podokruh okruhu R a $M \subseteq K$, pak $S' \subseteq K$.

Z 1, 2 a 3' (pro $K = S$) dostáváme $S' \subseteq S$. Z 1', 2' a 3 (pro $K = S'$) dostáváme $S \subseteq S'$. Celkem tedy $S = S'$.

Díky Tvrzení 8.3.7 můžeme zavést označení: Nechť R je okruh a $M \subseteq R$. Jednoznačně daný podokruh okruhu R generovaný množinou M budeme značit $\langle M \rangle$. Množina M se nazývá množina generátorů okruhu $\langle M \rangle$. Pokud množina M je konečná, $M = \{a_1, a_2, \ldots, a_n\}$, pak hovoříme o podokruhu generovaném prvky a_1, a_2, \ldots, a_n a značíme jej často stručně $\langle a_1, a_2, \ldots, a_n \rangle$.

Nechť R je okruh, S je podokruh okruhu R, $a \in R$. Podokruh $\langle S \cup \{a\} \rangle$ okruhu R budeme označovat $S[a]$.

8.3.8. Příklad. \mathbb{R} je podokruh tělesa \mathbb{C}, $i \in \mathbb{C}$. Je $\mathbb{C} = \mathbb{R}[i]$. Zdůvodnění: Zřejmě $\mathbb{R}[i] \subseteq \mathbb{C}$. Ukážeme, že $\mathbb{C} \subseteq \mathbb{R}[i]$. Nechť a, b jsou libovolná reálná čísla. Chceme: $a + bi \in \mathbb{R}[i]$. Je $a, b, i \in \mathbb{R} \cup \{i\} \subseteq (\mathbb{R} \cup \{i\})$, takže $a, b, i \in \mathbb{R}[i]$. Protože $\mathbb{R}[i]$ je podokruh, dostáváme postupně $bi \in \mathbb{R}[i]$, $a + bi \in \mathbb{R}[i]$.

Také v okruzích používáme známé symboly \sum a \prod. Nyní vymežíme (připomeneme) jejich význam.

Nechť R je okruh, m, n jsou celá čísla, pro každé celé číslo i, $m \leq i \leq n$, je $a_i \in R$. Pak

$$\sum_{m \leq i \leq n} a_i = \begin{cases} a_m + a_{m+1} + \cdots + a_n & \text{pro } m \leq n \\ 0 & \text{pro } m > n \end{cases}$$
Jestliže navíc R je asociativní okruh s jednotkovým prvkem, pak

$$
\prod_{m \leq i \leq n} a_i = \begin{cases}
 a_m \cdot a_{m+1} \cdots a_n & \text{pro } m \leq n \\
 1 & \text{pro } m > n
\end{cases}
$$

Uvědomme si, že pro celá čísla k, l je $k < l$ ekvivalentní s $k \leq l - 1$, takže například

$$
\sum_{0 \leq i < n} a_i = \sum_{0 \leq i \leq n-1} a_i.
$$

8.3.9. Věta. Nechť R je komutativní asociativní okruh s jednotkovým prvkem, S je podokruh okruhu R, $1 \in S$, $a \in R$, n je nezáporné celé číslo, $s_0, s_1, \ldots, s_n \in S$, $a^{n+1} = s_0 + s_1 a + s_2 a^2 + \cdots + s_n a^n$. Pak

$$
S[a] = \{u_0 + u_1 a + u_2 a^2 + \cdots + u_n a^n \mid u_0, u_1, u_2, \ldots, u_n \in S\}.
$$

Důkaz. Dokážeme nejprve pomocné tvrzení: Nechť $u_0, u_1, \ldots, u_n \in S$, $v \in S$. Pro každé nezáporné celé číslo j platí:

$$
\left(\sum_{0 \leq i \leq n} u_i a^i\right) \cdot v a^j = \sum_{0 \leq i \leq n} v_i a^i
$$

pro nějaká $v_0, v_1, \ldots, v_n \in S$.

Důkaz pomocného tvrzení: Postupujme indukcí vzhledem $k j$. Pro $j = 0$:

$$
\left(\sum_{0 \leq i \leq n} u_i a^i\right) \cdot v a^0 = \left(\sum_{0 \leq i \leq n} u_i a^i\right) \cdot v \cdot 1
$$

$$
= \left(\sum_{0 \leq i \leq n} u_i a^i\right) \cdot v
$$

$$
= \sum_{0 \leq i \leq n} u_i v a^i
$$

$$
= \sum_{0 \leq i \leq n} (u_i v) a^i
$$
Pro celé číslo i, $0 \leq i \leq n$, položíme $v_i = u_iv$; je $u_i, v \in S$ a S je podokruh, takže $u_iv \in S$, $v_i \in S$.

$j > 0$:

$$
\left(\sum_{0 \leq i \leq n} u_i a^i \right) \cdot va^j = \left(\sum_{0 \leq i \leq n} u_i a^i \right) \cdot va^{j-1}a
$$

$$
= \left(\left(\sum_{0 \leq i \leq n} u_i a^i \right) \cdot va^{j-1} \right) \cdot a
$$

Podle indukčního předpokladu existují $w_0, w_1, \ldots, w_n \in S$,

$$
\left(\sum_{0 \leq i \leq n} u_i a^i \right) \cdot va^{j-1} = \sum_{0 \leq i \leq n} w_i a^i
$$
KAPITOLA 8. ZÁKLADNÍ POJMY TEORIE OKRUHŮ

Pak

\[
\left(\sum_{0 \leq i \leq n} u_i a^i \right) \cdot v a^j = \left(\sum_{0 \leq i \leq n} w_i a^i \right) \cdot a
\]

= \sum_{0 \leq i \leq n} w_i a^i a

= \sum_{0 \leq i \leq n} w_i a^{i+1}

= \left(\sum_{0 \leq i < n} w_i a^{i+1} \right) + w_n a^{n+1}

= \left(\sum_{0 \leq i < n} w_i a^{i+1} \right) + w_n \cdot \sum_{0 \leq i \leq n} s_i a^i

= \left(\sum_{0+1 \leq i+1 < n+1} w_{(i+1)} a^{i+1} \right) + \sum_{0 \leq i \leq n} w_n s_i a^i

= \left(\sum_{1 \leq i < n+1} w_i a^i \right) + \sum_{0 \leq i \leq n} w_n s_i a^i

= w_n s_0 a^0 + \left(\sum_{1 \leq i \leq n} w_{i-1} a^i \right) + \sum_{1 \leq i \leq n} w_n s_i a^i

= w_n s_0 a^0 + \sum_{1 \leq i \leq n} \left(w_{i-1} a^i + w_n s_i a^i \right)

= (w_n s_0) a^0 + \sum_{1 \leq i \leq n} (w_{i-1} + w_n s_i) a^i

Pro celé číslo \(i \), \(1 \leq i \leq n \), položme \(v_i = w_{i-1} + w_n s_i \); je \(w_{i-1}, w_n, s_i \in S \) a \(S \) je podokruh, takže \(w_{i-1} + w_n s_i \in S \), \(v_i \in S \). Dále položme \(v_0 = w_n s_0 \); je \(w_n, s_0 \in S \) a \(S \) je podokruh, takže \(w_n s_0 \in S \), \(v_0 \in S \). Nyní

\[
\left(\sum_{0 \leq i \leq n} u_i a^i \right) \cdot v a^j = (w_n s_0) a^0 + \sum_{1 \leq i \leq n} (w_{i-1} + w_n s_i) a^i
\]

= \(v_0 a^0 + \sum_{1 \leq i \leq n} v_i a^i \)

= \sum_{0 \leq i \leq n} v_i a^i
8.3. PODOKRUHY A IDEÁLY

Konec důkazu Pomocného tvrzení.

Položme

\[T = \{ u_0 + u_1 a + u_2 a^2 + \cdots + u_n a^n \mid u_0, u_1, u_2, \ldots, u_n \in S \} . \]

Dokážeme, že \(T = S[a] \).

1. \(T \) je podokruh okruhu \(R \):

Nechť \(x, y \in T \). Chceme: \(x + y \in T \), \(xy \in T \).

Existují \(u_0, u_1, \ldots, u_n \in S \), \(v_0, v_1, \ldots, v_n \in S \) tak, že

\[
 x = \sum_{0 \leq i \leq n} u_i a^i, \quad y = \sum_{0 \leq i \leq n} v_i a^i .
\]

Počítejme:

\[
 x + y = \left(\sum_{0 \leq i \leq n} u_i a^i \right) + \left(\sum_{0 \leq i \leq n} v_i a^i \right)
 = \sum_{0 \leq i \leq n} (u_i a^i + v_i a^i)
 = \sum_{0 \leq i \leq n} (u_i + v_i) a^i
\]

Pro každé celé číslo \(i \), \(0 \leq i \leq n \), je \(u_i, v_i \in S \) a přitom \(S \) je podokruh, takže \(u_i + v_i \in S \). Proto \(\sum_{0 \leq i \leq n} (u_i + v_i) a^i \in T \), \(x + y \in T \).

Počítejme dále:

\[
 xy = \left(\sum_{0 \leq i \leq n} u_i a^i \right) \cdot \left(\sum_{0 \leq i \leq n} v_i a^i \right)
 = \left(\sum_{0 \leq i \leq n} u_i a^i \right) \cdot (v_0 a^0 + v_1 a^1 + \cdots + v_n a^n)
 = \left(\sum_{0 \leq i \leq n} u_i a^i \right) \cdot v_0 a^0 + \left(\sum_{0 \leq i \leq n} u_i a^i \right) \cdot v_1 a^1 + \cdots + \left(\sum_{0 \leq i \leq n} u_i a^i \right) \cdot v_n a^n
\]

Nechť \(j \) je celé číslo, \(0 \leq j \leq n \). Podle Pomocného tvrzení existují \(v_{j,0}, v_{j,1}, \ldots, v_{j,n} \in S \) tak, že

\[
 \left(\sum_{0 \leq i \leq n} u_i a^i \right) \cdot v_j a^j = \sum_{0 \leq i \leq n} v_{j,i} a^i .
\]
KAPITOLA 8. ZÁKLADNÍ POJMY TEORIE OKRUHŮ

Pro každé celé číslo \(i \), \(0 \leq i \leq n \), je \(v_{0,i}, v_{1,i}, \ldots, v_{n,i} \in S \) a přitom \(S \) je podokruh, takže \(v_{0,i} + v_{1,i} + \cdots + v_{n,i} \in S \). Proto \(\sum_{0 \leq i \leq n} (v_{0,i} + v_{1,i} + \cdots + v_{n,i})a^i \in T \), \(xy \in T \).

Nechť nyní \(x \in T \). Chceme: \(-x \in T \).

Je \(x = u_0 + u_1a + \cdots + u_na^n \) pro nějaké \(u_0, u_1, \ldots, u_n \in S \). Počítejme:

\[
-x &= -(u_0 + u_1a + \cdots + u_na^n) \\
&= (-u_0) + (-u_1)a + \cdots + (-u_na^n)
\]

Jelikož \(S \) je podokruh, máme \(-u_0, -u_1, \ldots, -u_n \in S \) a tedy \((-u_0) + (-u_1)a + \cdots + (-u_na^n) \in T \), \(-x \in T \).

Ještě je třeba ukázat, že \(0 \in T \). Stačí si uvědomit, že \(0 \in S \) (\(S \) je podokruh), takže \(0 = 0 + 0 \cdot a + \cdots + 0 \cdot a^n \in T \).

Nyní je tedy konečně dokázáno, že \(T \) je podokruh okruhu \(R \).

2. \(S \cup \{a\} \subseteq T \):

Nejprve ukážeme, že \(S \subseteq T \). Nechť \(s \in S \). Chceme: \(s \in T \).

\(S \) je podokruh, takže \(0 \in S \). Pak \(s + 0 \cdot a + \cdots + 0 \cdot a^n \in T \). Ovšem \(s + 0 \cdot a + \cdots + 0 \cdot a^n = s + 0 + \cdots + 0 = s \), takže \(s \in T \).

Ještě ukážeme, že \(a \in T \).

Předpokládejme nejprve, že \(n = 0 \). Pak \(a^{0+1} = s_0 \), přičemž \(s_0 \in S \); uvážíme-li, že \(a^{0+1} = a = a \), dostáváme \(a \in S \). Již jsme dokázali, že \(S \subseteq T \), takže \(a \in T \). Nyní předpokládejme, že \(n > 0 \). Uvědomme si, že \(0, 1 \in S \). Pak \(0 + 1 \cdot a + 0 \cdot a^2 + \cdots + 0 \cdot a^n \in T \). Ovšem \(0 + 1 \cdot a + 0 \cdot a^2 + \cdots + 0 \cdot a^n = 0 + a + 0 + \cdots + 0 = a \) a tedy \(a \in T \).
3. Nechť \(K \) je podokruh okruhu \(R \), \(S \cup \{a\} \subseteq K \). Chceme: \(T \subseteq K \).

Nechť \(x \in T \). Ukážeme, že \(x \in K \). Je \(x = u_0 + u_1a + \cdots + u_na^n \) pro nějaká \(u_0, u_1, \ldots, u_n \in S \). Zvolme libovolně celé čísla \(i \), \(0 < i \leq n \).

Je \(u_ia^i \in K \), protože \(u_i \in K \) a \(a \in K \) a \(K \) je podokruh. Máme tedy \(u_0, u_1, \ldots, u_n \) a \(a \) v podokruhu \(K \), \(x \in K \).

Nyní máme dokázáno, že \(T = \langle S \cup \{a\} \rangle \), \(T = S[a] \). Věta je dokázána.

Připomeneme nyní pojem algebraické celé číslo.

8.3.10. Definice. Nechť \(n \) je kladné celé číslo. Komplexní číslo \(\alpha \) se nazývá algebraické celé číslo stupně \(n \), platí-li:

1. Existují celá čísla \(c_0, c_1, \ldots, c_{n-1} \) taková, že \(c_0 + c_1\alpha + \cdots + c_{n-1}\alpha^{n-1} + \alpha^n = 0 \).

2. Pro všechna celá čísla \(d_0, d_1, \ldots, d_{n-1} \) platí: jestliže \(d_0 + d_1\alpha + \cdots + d_{n-1}\alpha^{n-1} = 0 \), pak \(d_0 = d_1 = \cdots = d_{n-1} = 0 \).

8.3.11. Příklady.

1. Každé celé číslo je algebraické celé číslo stupně 1.

2. \(\sqrt{2} \) je algebraické celé číslo stupně 2.

Zdůvodnění:
Položme \(c_0 = -2, c_1 = 0 \). Čísla \(c_0, c_1 \) jsou celá, \(c_0 + c_1\sqrt{2} + (\sqrt{2})^2 = -2 + 0 \cdot \sqrt{2} + (\sqrt{2})^2 = -2 + 0 + 2 = 0 \). Dále, nechť \(d_0, d_1 \) jsou celá čísla, \(d_0 + d_1\sqrt{2} = 0 \). Chceme: \(d_0 = d_1 = 0 \). Předpokládejme, že \(d_1 \neq 0 \). Pak \(\sqrt{2} = -\frac{d_0}{d_1} \). Ovšem číslo \(-\frac{d_0}{d_1} \) je racionální, takže \(\sqrt{2} \) je racionální číslo, spor. Nutně tedy \(d_1 = 0 \). Pak \(d_0 + 0 \cdot \sqrt{2} = 0 \), \(d_0 = 0 \).

3. \(i = \sqrt{-1} \) je algebraické celé číslo stupně 2.

Zdůvodnění:
Položme \(c_0 = 1, c_1 = 0 \). Čísla \(c_0, c_1 \) jsou celá, \(c_0 + c_1i + i^2 = 1 + 0 \cdot i + i^2 = 1 + 0 + (-1) = 0 \). Dále, nechť \(d_0, d_1 \) jsou celá čísla, \(d_0 + d_1i = 0 \). Chceme: \(d_0 = d_1 = 0 \). To zřejmě platí.
4. \(\frac{1}{2} \) není algebraické celé číslo.

Zdůvodnění:
Předpokládejme, že \(\frac{1}{2} \) je algebraické celé číslo stupně \(n \). Pak \(n \) je kladné celé číslo a existují celá čísla \(c_0, c_1, \ldots, c_{n-1} \) taková, že \(c_0 + c_1 \cdot \frac{1}{2} + \cdots + c_{n-1} \cdot (\frac{1}{2})^{n-1} + (\frac{1}{2})^n = 0 \). Pak

\[
\left(c_0 + c_1 \cdot \frac{1}{2} + \cdots + c_{n-1} \cdot \left(\frac{1}{2} \right)^{n-1} + \left(\frac{1}{2} \right)^n \right) \cdot 2^n = 0 \cdot 2^n
\]

\[
c_0 \cdot 2^n + c_1 \cdot 2^{n-1} + \cdots + c_{n-1} \cdot 2 + 1 = 0.
\]

Dostáváme spor, protože v poslední rovnosti je na levé straně liché celé číslo, kdežto na straně pravé je sudé cele číslo. Závěr: \(\frac{1}{2} \) není algebraické celé číslo.

8.3.12. Věta. Nechť \(\alpha \) je algebraické celé číslo stupně \(n + 1 \). Pak

\[
\mathbb{Z}[\alpha] = \{ u_0 + u_1 \alpha + \cdots + u_n \alpha^n \mid u_0, u_1, \ldots, u_n \in \mathbb{Z} \},
\]

přičemž vyjádření prvků okruhu \(\mathbb{Z}[\alpha] \) ve tvaru \(u_0 + u_1 \alpha + \cdots + u_n \alpha^n \), kde \(u_0, u_1, \ldots, u_n \) jsou celá čísla, je jednoznačné.

Důkaz. Jelikož \(\alpha \) je algebraické celé číslo stupně \(n + 1 \), je \(n \) nezáporné celé číslo a existují celá čísla \(c_0, c_1, \ldots, c_n \) tak, že

\[
c_0 + c_1 \alpha + \cdots + c_n \alpha^n + \alpha^{n+1} = 0.
\]

Uvědomme si, že \(\mathbb{C} \) je těleso (tedy také komutativní asociativní okruh s jednotkovým prvkem), \(\mathbb{Z} \) je podokruh tělesa \(\mathbb{C} \), \(1 \in \mathbb{Z} \). Pak je

\[
\mathbb{Z}[\alpha] = \{ u_0 + u_1 \alpha + \cdots + u_n \alpha^n \mid u_0, u_1, \ldots, u_n \in \mathbb{Z} \},
\]

ještě je třeba ukázat jednoznačnost vyjádření prvků okruhu \(\mathbb{Z}[\alpha] \) ve tvaru \(u_0 + u_1 \alpha + \cdots + u_n \alpha^n \), kde

\[
u_0, u_1, \ldots, u_n \text{ jsou celá čísla. Nechť tedy } u_0, u_1, \ldots, u_n \in \mathbb{Z}, v_0, v_1, \ldots, v_n \in \mathbb{Z},
\]

\[
u_0 + u_1 \alpha + \cdots + u_n \alpha^n = v_0 + v_1 \alpha + \cdots + v_n \alpha^n.
\]

Chceme: \(u_j = v_j \) pro všechna celá čísla \(j \), \(0 \leq j \leq n \). Máme

\[
u_0 + u_1 \alpha + \cdots + u_n \alpha^n = v_0 + v_1 \alpha + \cdots + v_n \alpha^n
\]

\[
(u_0 + u_1 \alpha + \cdots + u_n \alpha^n) - (v_0 + v_1 \alpha + \cdots + v_n \alpha^n) = 0
\]

\[
(u_0 - v_0) + (u_1 - v_1) \alpha + \cdots + (u_n - v_n) \alpha^n = 0
\]
Uvědomme si, že pro všechna celá čísla \(j \), \(0 \leq j \leq n \), je \(u_j - v_j \in \mathbb{Z} \). Protože \(\alpha \) je algebraické celé číslo stupně \(n + 1 \), máme \(u_j - v_j = 0, \ u_j = v_j \), a to pro všechna celá čísla \(j \), \(0 \leq j \leq n \).

Okruhy \(\mathbb{Z}[\alpha] \), kde \(\alpha \) je algebraické celé číslo stupně 2, budeme podrobněji zkoumat v části 9.1. Speciálně se bude zabývat oborem integrity \(\mathbb{Z}[\sqrt{-1}] = \mathbb{Z}[i] \) zvaným obor integrity Gaussových celých čísel.

Na závěr této části podáme základní informace o speciálních podokruzích zvaných ideály.

8.3.13. Definice. Nechť \(R \) je okruh, \(I \subseteq R \). Množina \(I \) se nazývá ideál v okruhu \(R \), jestliže platí

1. pro všechna \(x, y \in I \) je \(x + y \in I \)
2. pro všechna \(x \in I, \ z \in R \) je \(zx \in I \) a \(xz \in I \)
3. \(0 \in I \)
4. pro všechna \(x \in I \) je \(-x \in I \).

1. Jestliže \(I \) je ideál v okruhu \(R \), pak \(I \) je podokruh okruhu \(R \). V definici ideálu je silnější požadavek na uzavřenost vzhledem k součinu: má být \(zx \in I \) a \(xz \in I \) pro všechna \(x \in I, \ z \in R \), nikoli pouze pro všechna \(x, z \in I \). Například \(\mathbb{Z} \) je podokruh tělesa \(\mathbb{Q} \) (součet a součin dvou celých čísel je celé číslo, 0 je celé číslo, opačné číslo ke každému celému číslu je opět celé číslo), avšak \(\mathbb{Z} \) není ideál v tělese \(\mathbb{Q} \) – stačí si uvědomit, že \(1 \in \mathbb{Z}, \frac{1}{2} \in \mathbb{Q} \), avšak \(1 \cdot \frac{1}{2} = \frac{1}{2} \notin \mathbb{Z} \).

2. \(\{0\} \) a \(R \) jsou ideály v každém okruhu \(R \). Tyto ideály se nazývají nevlastní, ostatní ideály se nazývají vlastní.

3. V tělese jsou pouze nevlastní ideály. Zdůvodnění: Nechť \(T \) je těleso, \(I \) je ideál v \(I \). Chceme: \(I = \{0\} \) nebo \(I = T \). Je-li \(I = \{0\} \), jsme hotovi. Nechť tedy \(I \neq \{0\} \). Protože \(0 \in I \), musí existovat prvek \(a \in I, \ a \neq 0 \). Ukážeme, že \(I = T \). Jistě \(I \subseteq T \). Zbývá dokázat, že \(T \subseteq I \). Zvolme libovolné \(x \in T \). Chceme: \(x \in I \). Využijeme toho, že \(a \in T \) (je \(I \subseteq T \)), \(a \neq 0 \), takže v \(T \) existuje prvek \(a^{-1} \). Protože \(I \) je ideál v \(T \) a \(a \in I \), máme \((xa^{-1})a \in I \); ovšem \((xa^{-1})a = x(aa^{-1}) = x \cdot 1 = x \), takže \(x \in I \).
8.3.15. **Tvрzění.** Nechť R je komutativní okruh s jednotkovým prvkem, $I \subseteq R$. Platí: I je ideál v okruhu R právě tehdy, když platí:

1. pro všechna $x, y \in I$ je $x + y \in I$
2. pro všechna $x \in I$, $z \in R$ je $zx \in I$
3. $0 \in I$.

Důkaz. Víme ihned, že ideál I v okruhu R splňuje uvedené tři podmínky. Předpokládejme nyní, že podmnožina I okruhu R splňují uvedené tři podmínky. Prověříme, že I splňuje všechny podmínky z definice ideálu:

1. pro všechna $x, y \in I$ je $x + y \in I$: To předpokládáme.
2. pro všechna $x \in I$, $z \in R$ je $zx \in I$ a $xz \in I$: Nechť $x \in I$, $z \in R$. Pak $zx \in I$ dle předpokladu; $xz \in I$ díky tomu, že R je komutativní okruh a v něm $xz = zx$.
3. $0 \in I$: To předpokládáme.
4. pro všechna $x \in I$ je $-x \in I$: Nechť $x \in I$. Chceme: $-x \in I$. Je $-1 \in R$ (R je okruh s jednotkovým prvkem) a dle předpokladu číslo 2 pak $(-1) \cdot x \in I$. Ovšem $(-1) \cdot x = -(1 \cdot x) = -x$, takže $-x \in I$.

8.3.16. **Tvрzění.** Nechť R je okruh, I_1, I_2 jsou ideály v R. Pak $I_1 \cap I_2$ je ideál v R.

Důkaz. Je $I_1 \cap I_2 \subseteq R$. Prověříme, že množina $I_1 \cap I_2$ splňuje všechny podmínky z definice ideálu:

1. pro všechna $x, y \in I_1 \cap I_2$ je $x + y \in I_1 \cap I_2$: Nechť $x, y \in I_1 \cap I_2$. Chceme: $x + y \in I_1 \cap I_2$. Je $x, y \in I_1$. Protože I_1 je ideál, máme $x + y \in I_1$. Také $x, y \in I_2$, I_2 je ideál a tedy $x + y \in I_2$. Ukázali jsme, že $x + y \in I_1$ a také $x + y \in I_2$. Proto $x + y \in I_1 \cap I_2$.

Následující tvrzení ukazuje, že v případě komutativních okruhů s jednotkovým prvkem je možno definici ideálu zkrátit - některé podmínky z definice lze vynechat.
2. pro všechna \(x \in I_1 \cap I_2, z \in R \) je \(zx \in I_1 \cap I_2 \) a \(xz \in I_1 \cap I_2 \): Nechť \(x \in I_1 \cap I_2, z \in R \). Chceme: \(zx \in I_1 \cap I_2 \) a \(xz \in I_1 \cap I_2 \). Je \(x \in I_1 \). Protože \(I_1 \) je ideál, máme \(zx \in I_1 \) a také \(xz \in I_1 \). Také \(x \in I_2 \), \(I_2 \) je ideál a tedy \(zx \in I_2 \), \(xz \in I_2 \). Ukázali jsme, že \(zx, xz \in I_1 \) a \(zx, xz \in I_2 \). Proto \(zx, xz \in I_1 \cap I_2 \).

3. \(0 \in I_1 \cap I_2 \): Protože \(I_1 \) je ideál, je \(0 \in I_1 \). Protože \(I_2 \) je ideál, je \(0 \in I_2 \). Celkem tedy \(0 \in I_1 \cap I_2 \).

4. pro všechna \(x \in I_1 \cap I_2 \) je \(-x \in I_1 \cap I_2 \): Je \(x \in I_1 \) a \(I_1 \) je ideál, takže \(-x \in I_1 \). Také \(x \in I_2 \), \(I_2 \) je ideál a tedy \(-x \in I_2 \). Ukázali jsme, že \(-x \in I_1 \) a také \(-x \in I_2 \). Proto \(-x \in I_1 \cap I_2 \).

Právě dokázané tvrzení snadno zobecníme.

8.3.17. Tvrzení. Nechť \(R \) je okruh, \(I_j \), pro každé \(j \in J \), \(J \neq \emptyset \), je ideál v \(R \). Pak \(\bigcap_{j \in J} I_j \) je ideál v \(R \).

Důkaz. Tvrzení se dokáže obdobně jak tvrzení 8.3.16. a důkaz přenecháváme čtenáři.

Podmnožina \(M \) okruhu \(R \) samozřejmě nemusí být ideálem v \(R \). Bude nás tedy zajímat nejmenší ideál okruhu \(R \) obsahující množinu \(M \) – tento ideál budeme nazývat ideál generovaný podmnožinou \(M \).

8.3.18. Definice. Nechť \(R \) je okruh, \(M \subseteq R \), \(I \subseteq R \). Pak \(I \) se nazývá ideál generovaný podmnožinou \(M \), platí-li:

1. \(I \) je ideál v okruhu \(R \)
2. \(M \subseteq I \)
3. pro všechna \(K \subseteq R \) platí: jestliže \(K \) je ideál v okruhu \(R \) a \(M \subseteq K \), pak \(I \subseteq K \).

8.3.19. Tvrzení. Nechť \(R \) je okruh, \(M \subseteq R \). Platí: Ideál generovaný množinou \(M \) existuje a je určen jednoznačně.

Důkaz.

existence:
Nechť \(I_j, \ j \in J\), je soubor všech ideálů v okruhu \(R\), které obsahují množinu \(M\). Je \(J \neq \emptyset\), protože \(R\) je ideál v \(R\) a \(M \subseteq R\). Položme \(I = \bigcap_{j \in J} I_j\). Ukážeme, že \(I\) splňuje všechny podmínky z definice ideálu generovaného množinou \(M\). Zřejmě \(I \subseteq R\).

1. \(I\) je ideál v okruhu \(R\): viz 8.3.17.

2. \(M \subseteq I\): pro každé \(j \in J\) je \(M \subseteq I_j\), takže \(M \subseteq \bigcap_{j \in J} I_j\), \(M \subseteq I\).

3. pro všechna \(K \subseteq R\) platí: jestliže \(K\) je ideál v okruhu \(R\) a \(M \subseteq K\), pak \(I \subseteq K\): Nechť \(K\) je ideál v \(R\), \(M \subseteq K\). Chceme: \(I \subseteq K\). Je \(K = I_p\) pro nějaké \(p \in J\) a tedy \(\bigcap_{j \in J} I_j \subseteq I_p\), \(I \subseteq K\).

 jednoznačnost:
 Nechť \(I \subseteq R\), \(J \subseteq R\), \(I, J\) jsou ideály generované množinou \(M\). Chceme: \(I = J\). Víme:

 1. \(I\) je ideál v okruhu \(R\)

 2. \(M \subseteq I\)

 3. pro všechna \(K \subseteq R\) platí: jestliže \(K\) je ideál v okruhu \(R\) a \(M \subseteq K\), pak \(I \subseteq K\).

 a také

 4. \(J\) je ideál v okruhu \(R\)

 5. \(M \subseteq J\)

 6. pro všechna \(K \subseteq R\) platí: jestliže \(K\) je ideál v okruhu \(R\) a \(M \subseteq K\), pak \(J \subseteq K\).

Z 1, 2 a 6 (pro \(K = I\)) máme \(J \subseteq I\). Z 4, 5 a 3 (pro \(K = J\)) máme \(I \subseteq J\). Takže \(I \subseteq J\) a \(J \subseteq I\), což dává \(I = J\).

Tvrzení 8.3.19. umožňuje zavést označení. Nechť \(R\) je okruh, \(M \subseteq R\). Pak ideál generovaný podmnožinou \(M\) budeme označovat \((M)\). Jestliže \(M\) je konečná, \(M = \{a_1, a_2, \ldots, a_n\}\), pak místo \((\{a_1, a_2, \ldots, a_n\})\) budeme často stručněji psát \((a_1, a_2, \ldots, a_n)\) a hovoříme někdy o ideálu generovaném prvky \(a_1, a_2, \ldots, a_n\).
Dobré bude znát také nějaké více konstruktivní vymezení ideálu generovaného podmnožinou \(M \) okruhu \(R \) – zatím známe pouze dvě vymezení, a to definici a fakt, že ideál generovaný podmnožinou \(M \) je roven průniku všech ideálů v okruhu \(R \) obsahujících množinu \(M \) (viz důkaz tvrzení 8.3.19.). Konstruktivní popis ideálu generovaného podmnožinou asociativního komutativního okruhu s jednotkovým prvkem podáváme v následující větě.

8.3.20. Věta. Nechť \(R \) je asociativní komutativní okruh s jednotkovým prvkem, \(n \) je kladné celé číslo, \(a_1, a_2, \ldots, a_n \in R \). Pak

\[
(a_1, a_2, \ldots, a_n) = \{r_1a_1 + r_2a_2 + \cdots + r_na_n \mid r_1, r_2, \ldots, r_n \in R\}.
\]

Důkaz. Nechť \(I = \{r_1a_1 + r_2a_2 + \cdots + r_na_n \mid r_1, r_2, \ldots, r_n \in R\} \). Jistě \(I \subseteq R \). Ukážeme, že \(I \) splňuje všechny podmínky z definice ideálu generovaného prvky \(a_1, a_2, \ldots, a_n \).

1. \(I \) je ideál v okruhu \(R \): \(R \) je komutativní asociativní okruh s jednotkovým prvkem, takže můžeme použít tvrzení 8.3.15.

Nechť \(x, y \in I \). Chceme: \(x + y \in I \).

Nechť \(x = r_1a_1 + r_2a_2 + \cdots + r_na_n \), kde \(r_1, r_2, \ldots, r_n \in R \), a \(y = s_1a_1 + s_2a_2 + \cdots + s_na_n \), kde \(s_1, s_2, \ldots, s_n \in R \). Pak

\[
x + y = (r_1a_1 + r_2a_2 + \cdots + r_na_n) + (s_1a_1 + s_2a_2 + \cdots + s_na_n)
= r_1a_1 + s_1a_1 + r_2a_2 + s_2a_2 + \cdots + r_na_n + s_na_n
= (r_1 + s_1)a_1 + (r_2 + s_2)a_2 + \cdots + (r_n + s_n)a_n
\]

Uvědomme si, že \(r_1 + s_1, r_2 + s_2, \ldots, r_n + s_n \in R \), takže \(x + y \in I \).

Nechť \(x \in I \), \(z \in R \). Chceme: \(zx \in I \).

Nechť \(x = r_1a_1 + r_2a_2 + \cdots + r_na_n \), kde \(r_1, r_2, \ldots, r_n \in R \). Pak

\[
zx = z \cdot (r_1a_1 + r_2a_2 + \cdots + r_na_n)
= z(r_1a_1) + z(r_2a_2) + \cdots + z(r_na_n)
= (zr_1)a_1 + (zr_2)a_2 + \cdots + (zr_n)a_n
\]

Uvědomme si, že \(zr_1, zr_2, \ldots, zr_n \in R \), takže \(zx \in I \).

Chceme: \(0 \in I \).

Nechť \(0 \in R \), takže \(0 \cdot a_1 + 0 \cdot a_2 + \cdots + 0 \cdot a_n \in I \). Ovšem \(0 \cdot a_1 + 0 \cdot a_2 + \cdots + 0 \cdot a_n = 0 + 0 + \cdots + 0 = 0 \), tudíž \(0 \in I \).
2. \(\{a_1, a_2, \ldots, a_n \} \subseteq I \): Buď \(i \) celé číslo, \(1 \leq i \leq n \). Chceme: \(a_i \in I \).

Je \(0, 1 \in R \), takže \(0 \cdot a_1 + \cdots + 0 \cdot a_{i-1} + 1 \cdot a_i + 0 \cdot a_{i+1} + \cdots + 0 \cdot a_n \in I \). Ovšem
\[0 \cdot a_1 + \cdots + 0 \cdot a_{i-1} + 1 \cdot a_i + 0 \cdot a_{i+1} + \cdots + 0 \cdot a_n = 0 + \cdots + 0 + a_i + 0 \cdots + 0 = a_i, \]

tudíž \(a_i \in I \).

3. pro všechna \(K \subseteq R \) platí: jestliže \(K \) je ideál v okruhu \(R \) a \(\{a_1, \ldots, a_n \} \subseteq K \), pak \(I \subseteq K \).

Nechť \(K \subseteq R \), \(K \) je ideál v okruhu \(R \), \(\{a_1, a_2, \ldots, a_n \} \subseteq K \). Chceme: \(I \subseteq K \).

Buď \(x \in I \). Je třeba ukázat, že \(x \in K \). Je \(x = r_1 a_1 + r_2 a_2 + \cdots + r_n a_n \), kde
\[r_1, r_2, \ldots, r_n \in R. \] Protože \(r_1 \in R \), \(a_1 \in K \) (vím, že \(\{a_1, a_2, \ldots, a_n \} \subseteq K \)) a \(K \) je ideál v okruhu \(R \), je \(r_1 a_1 \in K \); obdobně se zdůvodní, že \(r_2 a_2, \ldots, r_n a_n \in K \). Celkem máme \(r_1 a_1 + r_2 a_2 + \cdots + r_n a_n \in K \) a také víme, že \(K \) je ideál. Proto \(r_1 a_1 + r_2 a_2 + \cdots + r_n a_n \in K \), \(x \in K \).

8.3.21. Definice. Nechť \(R \) je okruh, \(I \) je ideál v okruhu \(R \). Ideál \(I \) se nazývá hlavní, pokud \(I \) je generován jedním prvkem okruhu \(R \) (tedy pokud existuje \(a \in R \) tak, že \(I = (a) \)). Jestliže každý ideál v okruhu \(R \) je hlavní, pak \(R \) se nazývá okruh hlavních ideálů.

8.3.22. Příklady.

1. V každém okruhu \(R \) je ideál \(\{0\} \) hlavní. Je totiž \(\{0\} = ((0)) = (0) \).

2. Nechť \(R \) je okruh s jednotkovým prvkem. Pak ideál \(R \) je hlavní. Je totiž \(R = (\{1\}) = (1) \). Zdůvodnění:

\[R \] je ideál v \(R \): to platí
\[\{1\} \subseteq R \): to platí, protože 1 je jednotkový prvek okruhu \(R \)

Nechť \(K \subseteq R \), \(K \) je ideál v okruhu \(R \), \(\{1\} \subseteq K \). Chceme: \(R \subseteq K \).

Zvolme libovolně \(x \in R \). Ukážeme, že \(x \in K \). Je \(1 \in K \) (protože \(\{1\} \subseteq K \)) a také \(K \) je ideál, což dává \(x \cdot 1 \in K \), \(x \in K \).

3. Každé těleso je okruh hlavních ideálů. Zdůvodnění: V tělese \(T \) jsou pouze nevlastní ideály \(\{0\} \) a \(T \) (viz 8.3.14.) a tyto ideály jsou hlavní (viz výše body 1 a 2).

8.3.23. Tvrzení. Obor integrity celých čísel \(\mathbb{Z} \) je okruh hlavních ideálů.
8.3. PODOKRUHY A IDEÁLY

DŮKAZ. Nechť I je ideál v \mathbb{Z}. Ukážeme, že ideál I je hlavní. Jestliže $I = \{0\}$, pak I je hlavní, protože $\{0\} = (0)$. Nechť tedy $I \neq \{0\}$. Protože $0 \in I$ (to dle definice splňuje každý ideál), existuje $b \in I$, $b \neq 0$. Buď $M = \{x \in I \mid x > 0\}$. Je $M \subseteq I$. Ukážeme nyní, že $M \neq \emptyset$. Je-li $b > 0$, je $b \in M$ a jsme hotovi. Nechť tedy $b < 0$. Máme: $-1 \in \mathbb{Z}$, $b \in I$, I je ideál v \mathbb{Z}, takže $(-1) \cdot b \in I$, $-b \in I$; stačí si uvědomit, že $-b > 0$, tudíž $-b \in M$. Víme tedy, že $M \neq \emptyset$, $M \subseteq \mathbb{N}$. Proto existuje $a = \min M$ (každá neprázdná množina přirozených čísel má nejmenší prvek). Jde o čísla a nejmenší prvek). Je $r \in M$, speciálně $a > 0$ a $a \in I$. Ukážeme, že $I = (a)$; pak bude jasné, že ideál I je hlavní. \mathbb{Z} je asOCIATIVNí kOMUTATIVní okruh s jednotkovým prvkem a můžeme použít větu 8.3.20., podle které $(a) = \{ra \mid r \in \mathbb{Z}\}$. Postačí již jen dokázat, že $\{ra \mid r \in \mathbb{Z}\} = I$.

Nechť r je celé číslo. Chceme: $ra \in I$. Ovšem $a \in I$ a I je ideál v \mathbb{Z}, takže $ra \in I$.

$I \subseteq \{ra \mid r \in \mathbb{Z}\}$:

Nechť $x \in I$. Chceme: $x \in \{ra \mid r \in \mathbb{Z}\}$. Číslo x vydělíme se zbytkem číslem a (každé celé číslo lze vydělit se zbytkem každým kladným celým číslem): $x = ra + z$, kde r, z jsou celá čísla, $0 \leq z < a$. Dokážeme, že $z = 0$; pak $x = ra$ a důkaz bude hotov. Předpokládejme, že $z \neq 0$. Je tedy $y > 0$. Nechť $z = x - ra = x + (-r)a$. Víme, že $x \in I$. Dále $-r \in \mathbb{Z}$, I je ideál, takže $(-r)a \in I$. Máme $x \in I$, $(-r)a \in I$, I je ideál, tudíž $x + (-r)a \in I$, $z \in I$. Tudíž $z > 0$, $z \in I$, $z \in M$. Je $a = \min M$ a tedy $a \leq z$. Také $z < a$, celkem tedy $a < a$, spor. Nutně tedy $z = 0$.

Víme již, že každé těleso je okruh hlavních ideálů (příklad 8.3.22.) a také \mathbb{Z} je okruh hlavních ideálů. Další příklady okruhů hlavních ideálů poznáme v kapitole 10 nazvané Eukleidovské obory integrity – dokážeme v ní totiž, že každý Eukleidovský obor integrity je okruh hlavních ideálů. Mezi Eukleidovské obory integrity patří například obor integrity celých čísel \mathbb{Z} (tvrzení 8.3.23. je tedy speciálním případem obecnějšího tvrzení) a také obor integrity Gaussových celých čísel $\mathbb{Z}[i]$.

Na závěr této kapitoly uvedeme příklad oboru integrity, který není okruhem hlavních ideálů.

8.3.24. Příklad. Uvažme podokruh $\mathbb{Z}[\sqrt{-5}]$ tělesa \mathbb{C}. Ukážeme nejprve, že $\sqrt{-5}$ je algebraické celé číslo stupně 2 (viz definici 8.3.10.). Položme $c_0 = 5$, $c_1 = 0$. Čísla c_0, c_1 jsou celá a $c_0 + c_1 \cdot \sqrt{-5} + (\sqrt{-5})^2 = 5 + 0 + (-5) = 0$. Dále nechť d_0, d_1 jsou celá čísla, $d_0 + d_1 \cdot \sqrt{-5} = 0$. Chceme:
Kapitola 8. Základní pojmy teorie okruhů

\[d_0 = d_1 = 0. \text{ Je } d_1 \cdot \sqrt{-5} = -d_0, \quad d_1^2 \cdot (-5) = d_0^2. \] Předpokládejme, že \(d_1 \neq 0 \); pak \(d_1^2 \cdot (-5) < 0, \quad 0 < d_0^2 \), takže \(d_1^2 \cdot (-5) < d_0^2 \), spor. Nutné tedy \(d_1 = 0, \quad d_0 + 0 \cdot \sqrt{-5} = 0, \quad d_0 + 0 = 0, \quad d_0 = 0. \) Nyní je dokázáno, že \(\sqrt{-5} \) je algebraické celé číslo stupně 2. Dle 8.3.12. je \(\mathbb{Z}[\sqrt{-5}] = \{ u_0 + u_1 \cdot \sqrt{-5} \mid u_0, u_1 \in \mathbb{Z} \} \), přičemž vyjádření prvků okruhu \(\mathbb{Z}[\sqrt{-5}] \) ve tvaru \(u_0 + u_1 \cdot \sqrt{-5} \), kde \(u_0, u_1 \) jsou celá čísla, je jednoznačné. \(\mathbb{Z}[\sqrt{-5}] \) je podokruh tělesa, takže je to obor integrity. Platí: \(\mathbb{Z}[\sqrt{-5}] \) je obor integrity, který není okruhem hlavních ideálů.

Zdůvodnění:

Je \(3.2 + \sqrt{-5} \in \mathbb{Z}[\sqrt{-5}] \). Ukážeme, že ideál \((3.2 + \sqrt{-5}) \) není hlavní. Využijeme přitom zobrazení \(N : \mathbb{Z}[\sqrt{-5}] \to \mathbb{N}_0 \) definované následovně: pro celá čísla \(a, b \) je

\[
N(a + b\sqrt{-5}) = a^2 + 5b^2.
\]

Zobrazení \(N \) má důležitou vlastnost: pro všechna \(\alpha, \beta \in \mathbb{Z}[\sqrt{-5}] \) je

\[
N(\alpha\beta) = N(\alpha)N(\beta).
\]

Opravdu, nechť \(\alpha \in \mathbb{Z}[\sqrt{-5}], \quad \alpha = a + b\sqrt{-5}, \quad \beta \in \mathbb{Z}[\sqrt{-5}], \quad \beta = c + d\sqrt{-5} \), kde \(a, b, c, d \) jsou celá čísla. Počítejme:

\[
\alpha \beta = (a + b\sqrt{-5})(c + d\sqrt{-5})
= ac + ad\sqrt{-5} + bc\sqrt{-5} - 5bd
= (ac - 5bd) + (ad + bc)\sqrt{-5}
\]

\[
N(\alpha \beta) = N((ac - 5bd) + (ad + bc)\sqrt{-5})
= (ac - 5bd)^2 + 5(ad + bc)^2
= a^2c^2 - 10abcd + 25b^2d^2 + 5(a^2d^2 + 2abcd + b^2c^2)
= a^2c^2 - 10abcd + 25b^2d^2 + 5a^2d^2 + 10abcd + 5b^2c^2
= a^2c^2 + 25b^2d^2 + 5a^2d^2 + 5b^2c^2
\]

\[
N(\alpha)N(\beta) = N(a + b\sqrt{-5})N(c + d\sqrt{-5})
= (a^2 + 5b^2)(c^2 + 5d^2)
= a^2c^2 + 5a^2d^2 + 5b^2c^2 + 25b^2d^2
= a^2c^2 + 25b^2d^2 + 5a^2d^2 + 5b^2c^2
= N(\alpha \beta)
\]
8.3. PODOKRUHY A IDEÁLY

Postupujme sporem. Předpokládáme tedy, že $(3, 2+\sqrt{-5})$ je hlavní ideál. Pak existuje $\alpha \in \mathbb{Z}[\sqrt{-5}]$, $(\alpha) = (3, 2+\sqrt{-5})$. Je $\mathbb{Z}[\sqrt{-5}]$ asociativní komutativní okruh s jednotkovým prvkem, můžeme tedy použít větu 8.3.20. Dle této věty

$$(\alpha) = \{\beta\alpha | \beta \in \mathbb{Z}[\sqrt{-5}]\}, (3, 2+\sqrt{-5}) = \{\beta\cdot 3+\gamma\cdot (2+\sqrt{-5}) | \beta, \gamma \in \mathbb{Z}[\sqrt{-5}]\}.$$

Je $3 \in (3, 2+\sqrt{-5})$, takže $3 \in (\alpha)$, $3 = \beta\alpha$ pro nějaké $\beta \in \mathbb{Z}[\sqrt{-5}]$. Pak $N(3) = N(\beta\alpha) = N(\beta)N(\alpha)$, $9 = N(\beta)N(\alpha)$. Uvědomme si, že $N(\alpha), N(\beta) \in \mathbb{N}_0$, což dává $N(\alpha) \in \{1, 3, 9\}$. Jsou tedy pouze tři možnosti pro hodnotu $N(\alpha)$. Uvidíme dále, že každá z těchto tří možností dá spor. Tím bude dokázáno, že ideál $(3, 2+\sqrt{-5})$ není hlavní. Nechť $\alpha = a+b\sqrt{-5}$, kde a, b jsou celá čísla. Je tedy $N(\alpha) = a^2 + 5b^2$.

1. $N(\alpha) = 1$:
 Máme $a^2 + 5b^2 = 1$. Případ $b \neq 0$ dává $b^2 \geq 1, 5b^2 \geq 5, 1 = a^2 + 5b^2 \geq 5b^2 \geq 5, 1 \geq 5$, spor. Musí tedy být $b = 0$. Pak $a^2 = 1$, $a \in \{1, -1\}$.
 $a = 1$:
 Je $\alpha = 1 + 0 \cdot \sqrt{-5} = 1$. Máme $\alpha \in (\alpha)$, takže $\alpha \in (3, 2+\sqrt{-5})$, $1 \in (3, 2+\sqrt{-5})$. Pak $1 = \beta\cdot 3+\gamma\cdot (2+\sqrt{-5})$ pro nějaká $\beta, \gamma \in \mathbb{Z}[\sqrt{-5}]$.
 Budte $\beta = u_0 + u_1 \cdot \sqrt{-5}, \gamma = v_0 + v_1 \cdot \sqrt{-5}$, kde u_0, u_1, v_0, v_1 jsou celá čísla. Počítejme:

 $$\beta \cdot 3 + \gamma \cdot (2+\sqrt{-5}) = (u_0 + u_1\sqrt{-5}) \cdot 3 + (v_0 + v_1\sqrt{-5}) \cdot (2+\sqrt{-5}) \cdot \sqrt{-5} = 3u_0 + 3u_1\sqrt{-5} + 2v_0 + 2v_1\sqrt{-5} = u_0 + v_0 + 2v_1\sqrt{-5} + 3u_1\sqrt{-5} + 2v_0 + 2v_1\sqrt{-5} = (u_0 + 2v_0 - 5v_1) + (3u_1 + v_0 + 2v_1)\sqrt{-5}$$

 Je tedy $3u_0 + 2v_0 - 5v_1 = 1, 3u_1 + v_0 + 2v_1 = 0$; pak $3u_0 + 2v_0 - 5v_1 = 1, -6u_1 - 2v_0 - 4v_1 = 0$ a sečtením dostaneme $3u_0 - 9v_1 - 6u_1 = 1$, což dává $3(u_0 - 3v_1 - 2u_1) = 1$, číslo 1 je celočíselným násobkem čísla 3, spor.
 $a = -1$:
 Je $\alpha = -1 + 0 \cdot \sqrt{-5} = -1$. Máme $\alpha \in (\alpha)$, takže $\alpha \in (3, 2+\sqrt{-5}), -1 \in (3, 2+\sqrt{-5})$. Protože $(3, 2+\sqrt{-5})$ je ideál, je $-(-1) \in (3, 2+\sqrt{-5})$, $1 \in (3, 2+\sqrt{-5})$. To však dává spor, jak jsme před chvílí ukázali.

2. $N(\alpha) = 3$:
 Máme $a^2 + 5b^2 = 3$. Případ $b \neq 0$ dává $b^2 \geq 1, 5b^2 \geq 5, 3 = a^2 + 5b^2 \geq 5b^2 \geq 5, 3 \geq 5$, spor. Případ $b = 0$ dává $a^2 = 3$, spor (čtverec celého čísla nemůže být roven číslu 3).
3. \(N(\alpha) = 9 \):
Máme \(a^2 + 5b^2 = 9 \). Případ \(b \notin \{0, 1, -1\} \) dává \(b^2 \geq 4, 5b^2 \geq 20, \) \(9 = a^2 + 5b^2 \geq 5b^2 \geq 20, 9 \geq 20 \), spor. Musí tedy být \(b \in \{0, 1, -1\} \). Probereme postupně tři možnosti pro hodnotu čísla \(b \). Všechny dají spor.
\(b = 0 \):
Je \(a^2 = 9, a \in \{3, -3\} \). Předpokládejme nejdříve, že \(a = 3 \). Pak \(\alpha = 3 + 0 \cdot \sqrt{-5} = 3, (3) = (3, 2 + \sqrt{-5}), \) takže \(2 + \sqrt{-5} \in (3) \). Pak \(2 + \sqrt{-5} = \beta \cdot 3 \) pro nějaké \(\beta \in \mathbb{Z}[\sqrt{-5}] \). Nechť \(\beta = c + d\sqrt{-5}, \) kde \(c, d \) jsou celá čísla. Potom \(2 + \sqrt{-5} = (c + d\sqrt{-5}) \cdot 3 = 3c + 3d\sqrt{-5}, \) a tedy \(2 = 3c, 1 = 3d, \) spor (číslo 1 není celočíselným násobkem čísla 3). Nyní předpokládejme, že \(a = -3 \).
\(b = 1 \):
Je \(a^2 + 5 = 9, a^2 = 4, a \in \{2, -2\} \). Předpokládejme nejdříve, že \(a = 2 \). Pak \(\alpha = 2 + \sqrt{-5}, (2 + \sqrt{-5}) = (3, 2 + \sqrt{-5}). \) Je \(3 \in (3, 2 + \sqrt{-5}), \) takže \(3 \in (2 + \sqrt{-5}) \). Pak \(3 = \beta \cdot (2 + \sqrt{-5}) \) pro nějaké \(\beta \in \mathbb{Z}[\sqrt{-5}] \). Nechť \(\beta = c + d\sqrt{-5}, \) kde \(c, d \) jsou celá čísla. Potom \(3 = (c + d\sqrt{-5})(2 + \sqrt{-5}) = 2c + 2d\sqrt{-5} + c\sqrt{-5} - 5d = (2c - 5d) + (c + 2d)\sqrt{-5}, \) a tedy \(2c - 5d = 3, c + 2d = 0 \). Dostáváme \(-3d = 1, \) spor (číslo 1 není celočíselným násobkem čísla -3). Předpokládejme nyní, že \(a = -2 \). Pak \(\alpha = -2 + \sqrt{-5}, (-2 + \sqrt{-5}) = (3, 2 + \sqrt{-5}), \) takže \(3 \in (2 + \sqrt{-5}) \). Pak \(3 = \gamma \cdot (2 + \sqrt{-5}) \) pro nějaké \(\gamma \in \mathbb{Z}[\sqrt{-5}] \). Nechť \(\gamma = e + f\sqrt{-5}, \) kde \(e, f \) jsou celá čísla. Potom \(3 = (e + f\sqrt{-5})(-2 + \sqrt{-5}) = -2e - 2f\sqrt{-5} + e\sqrt{-5} - 5f = (-2e - 5f) + (e - 2f)\sqrt{-5}, \) a tedy \(-2e - 5f = 3, e - 2f = 0 \). Dostáváme \(-3f = 1, \) spor (číslo 1 není celočíselným násobkem čísla -3).
8.3. **PODOKRUHY A IDEÁLY**

celočíselným násobkem čísla 3). Předpokládejme nyní, že \(a = -2 \). Pak
\[
\alpha = -2 - \sqrt{-5}, \quad (-2 - \sqrt{-5}) = (3, 2 + \sqrt{-5}).
\]
Je 3 \(\in (3, 2 + \sqrt{-5}) \), takže
\[
3 \in (-2 - \sqrt{-5}).
\]
Pak \(3 = \gamma \cdot (-2 - \sqrt{-5}) \) pro nějaké \(\gamma \in \mathbb{Z}[\sqrt{-5}] \). Nechť
\[
\gamma = e + f \sqrt{-5}, \quad kde \ e, f \ jsou \ celá \ čísla. \ Potom \ 3 = (e + f \sqrt{-5})(-2 - \sqrt{-5}) = -2e - 2f \sqrt{-5} - e \sqrt{-5} + 5f = (-2e + 5f) + (-e - 2f) \sqrt{-5} \]
a tedy
\[
-2e + 5f = 3, \quad -e - 2f = 0.
\]
Dostáváme \(3f = 1, \) spor (číslo 1 není
celočíselným násobkem čísla 3).
KAPITOLA 8. ZÁKLADNÍ POJMY TEORIE OKRŮHŮ
Kapitola 9

Příklady okruhů

9.1 Okruh kvadratických celých čísel

9.1.1. Definice. Nechť a je celé číslo. Číslo a se nazývá bezčtvercové, pokud pro všechna kladná celá čísla b platí:

$$b^2/a \Rightarrow b = 1.$$

9.1.2. Tvrzení. Nechť a je celé číslo. Číslo a je bezčtvercové právě tehdy, když pro všechna prvočísla p platí: $-(p^2/a)$.

Důkaz.

Důkaz.

1. Předpokládejme, že \(a \) je bezčtvercové. Chceme: \(-a\) je bezčtvercové.
 Nechť \(b \) je kladné celé číslo, \(b^2/a \). Musíme ukázat, že \(b = 1 \).
 Existuje celé číslo \(c \), \(-a = b^2c \). Pak \(a = b^2(-c) \).
 Protože \(a \) je bezčtvercové, je \(b = 1 \).

2. Předpokládejme, že \(-a\) je bečtvercové. Chceme: \(a \) je bezčtvercové.
 Dle již dokázaného je číslo \(-(-a)\) bezčtvercové. Stačí si uvědomit, že \(-(-a) = a\).

9.1.4. Tvrzení. Nechť \(a = p_1p_2\ldots p_k \), kde \(p_1, p_2, \ldots, p_k \) jsou vzájemně různá prvočísla. Pak \(a \) je bezčtvercové.

Důkaz. Použijeme 9.1.2. Buď \(p \) prvočíslo. Chceme: \(\neg(p^2/a) \).
 Předpokládejme, že \(p^2/a \). Pak \(a = p^2b \), kde \(b \) je celé číslo.
 Takže \(p^2b = p_1p_2\ldots p_k \). Protože \(p \) je prvočíslo, existuje \(i \in \{1, 2, \ldots, k\} \), \(p/p_i \); jelikož \(p_i \) je prvočíslo, je \(p = p_i \). Pak

\[
\begin{align*}
p_i^2b & = p_1\ldots p_{i-1}p_ip_{i+1}\ldots p_k \\
p_ib & = p_1\ldots p_{i-1}p_{i+1}\ldots p_k
\end{align*}
\]

Protože \(p_i \) je prvočíslo, existuje \(j \in \{1, 2, \ldots, k\} - \{i\} \), \(p_i/p_j \). Jelikož \(p_j \) je prvočíslo, je \(p_i = p_j \).
 Ovšem \(j \neq i \), takže jsme dostali spor. Nutně tedy \(\neg(p^2/a) \).

9.1.5. Příklad. Určíme všechna bezčtvercová celá čísla \(a \) splňující \(0 \leq a \leq 20 \):
9.1. OKRUH KVADRATICKÝCH CELÝCH ČÍSEL

<table>
<thead>
<tr>
<th>číslo</th>
<th>Výsledok</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>NENÍ bezčtvercové</td>
</tr>
<tr>
<td>1</td>
<td>JE bezčtvercové</td>
</tr>
<tr>
<td>2</td>
<td>JE bezčtvercové</td>
</tr>
<tr>
<td>3</td>
<td>JE bezčtvercové</td>
</tr>
<tr>
<td>4</td>
<td>NENÍ bezčtvercové</td>
</tr>
<tr>
<td>5</td>
<td>JE bezčtvercové</td>
</tr>
<tr>
<td>6</td>
<td>JE bezčtvercové</td>
</tr>
<tr>
<td>7</td>
<td>JE bezčtvercové</td>
</tr>
<tr>
<td>8</td>
<td>NENÍ bezčtvercové</td>
</tr>
<tr>
<td>9</td>
<td>NENÍ bezčtvercové</td>
</tr>
<tr>
<td>10</td>
<td>JE bezčtvercové</td>
</tr>
<tr>
<td>11</td>
<td>JE bezčtvercové</td>
</tr>
<tr>
<td>12</td>
<td>NENÍ bezčtvercové</td>
</tr>
<tr>
<td>13</td>
<td>JE bezčtvercové</td>
</tr>
<tr>
<td>14</td>
<td>JE bezčtvercové</td>
</tr>
<tr>
<td>15</td>
<td>JE bezčtvercové</td>
</tr>
<tr>
<td>16</td>
<td>NENÍ bezčtvercové</td>
</tr>
<tr>
<td>17</td>
<td>JE bezčtvercové</td>
</tr>
<tr>
<td>18</td>
<td>NENÍ bezčtvercové</td>
</tr>
<tr>
<td>19</td>
<td>JE bezčtvercové</td>
</tr>
<tr>
<td>20</td>
<td>NENÍ bezčtvercové</td>
</tr>
</tbody>
</table>

Seznam všech bezčtvercových celých čísel a splňujících $0 \leq a \leq 20$: $1, 2, 3, 5, 6, 7, 10, 11, 13, 14, 15, 17, 19$.

Buď d bezčtvercové celé číslo, $d \neq 1$. Položme

$$
\theta = \begin{cases}
\sqrt{d} & \text{pokud } d \equiv 0 \pmod{4} \text{ nebo } d \equiv 3 \pmod{4} \\
\frac{1 + \sqrt{d}}{2} & \text{pokud } d \equiv 1 \pmod{4}
\end{cases}
$$

Uvědomme si, že případ $d \equiv 0 \pmod{4}$ nenastává, protože $d \equiv 0 \pmod{4}$ znamená $4/d - 0, 4/d, 2^{2}/d$.

Dále si všimněme, že číslo θ je jednoznačně určeno číslem d, takže místo θ bychom vlastně měli přesněji psát $\theta(d)$ či θ_d.

9.1.6. Tvrzení. Nechť d je bezčtvercové celé číslo, $d \neq 1$. Pak platí:

1. číslo \sqrt{d} není racionální

2. číslo θ není racionální.
Důkaz.

1. Provedeme důkaz sporem. Předpokládejme, že $\sqrt{d} = q$, kde q je racionální číslo. Jsou dvě možnosti:

 (a) $d < 0$:
 $d = q^2$, $q^2 < 0$, spor

 (b) $d > 1$:
 Nechť $q = \frac{a}{b}$, kde a, b jsou nesoudělná kladná celá čísla.

 $q = \frac{a}{b}$
 $\sqrt{d} = \frac{a}{b}$
 $b\sqrt{d} = a$
 $b^2d = a^2$

 $b^2pk = p^2l^2$
 $b^2k = pl^2$

 p/b: Víme již, že p/a. Celkem tedy p/a a p/b, což je spor s tím, že a, b jsou nesoudělná.

 p/k: Máme $k = pm$, kde m je celé číslo. Pak $d = pk = p \cdot pm = p^2m$, p^2/d, což je spor s tím, že d je bezčtvercové celé číslo.

2. Opět provedeme důkaz sporem. Předpokládejme, že $\theta = q$, kde q je racionální číslo. Jsou dvě možnosti:

 (a) $d \equiv 2 \pmod{4}$ nebo $d \equiv 3 \pmod{4}$:
 Je $\theta = \sqrt{d}$, takže $\sqrt{d} = q$, \sqrt{d} je racionální číslo. Dostali jsme spor s již dokázanou první částí tvrzení 9.1.6.

 (b) $d \equiv 1 \pmod{4}$:
 Je $\theta = \frac{1+\sqrt{d}}{2}$, takže $\frac{1+\sqrt{d}}{2} = q$, $\sqrt{d} = 2q - 1$. Protože q je racionální číslo, je také $2q - 1$ racionální číslo, takže \sqrt{d} je racionální číslo. Opět jsme dostali spor s již dokázanou první částí tvrzení 9.1.6.
9.1. OKRUH KVADRATICKÝCH CELÝCH ČÍSEL

9.1.7. Tvrzení. *Nechť d je bezčtvercové celé číslo, $d \neq 1$. Pak platí: číslo θ je algebraické celé číslo stupně 2.*

Důkaz. Jistě θ je komplexní číslo. Musíme ukázat, že θ splňuje podmínky z definice 8.3.10.

1. Chceme: Existují celá čísla c_0, c_1 taková, že $c_0 + c_1 \theta + \theta^2 = 0$.
 Rozlišíme dva případy:

 (a) $d \equiv 2 \ (4)$ nebo $d \equiv 3 \ (4)$:

 Je $\theta = \sqrt{d}$. Položme $c_0 = -d$, $c_1 = 0$. Čísla c_0, c_1 jsou celá a

 $$c_0 + c_1 \theta + \theta^2 = (-d) + 0 \cdot \sqrt{d} + (\sqrt{d})^2 = -d + 0 + d = 0.$$

 (b) $d \equiv 1 \ (4)$:

 Je $\theta = \frac{1 + \sqrt{d}}{2}$. Položme $c_0 = \frac{1-d}{4}, c_1 = -1$. Číslo c_1 je celé. Ukážeme, že také číslo c_0 je celé. Je $1 \equiv d \ (4)$, takže $4/1 - d, \frac{1-d}{4}$ je celé číslo, c_0 je celé číslo. Počítejme:

 $$c_0 + c_1 \theta + \theta^2 = \frac{1-d}{4} + (-1) \cdot \frac{1 + \sqrt{d}}{2} + \left(\frac{1 + \sqrt{d}}{2}\right)^2$$
 $$= \frac{1-d}{4} + \frac{-1 - \sqrt{d}}{2} + \frac{(1 + \sqrt{d})^2}{2^2}$$
 $$= \frac{1-d}{4} + \frac{-2 - 2\sqrt{d}}{4} + \frac{1 + 2\sqrt{d} + d}{4}$$
 $$= \frac{1-d - 2\sqrt{d} + 1 + 2\sqrt{d} + d}{4}$$
 $$= \frac{0}{4}$$
 $$= 0$$

2. Chceme: Pro všechna celá čísla d_0, d_1 platí: jestliže $d_0 + d_1 \theta = 0$, pak $d_0 = d_1 = 0$.
 Nechť d_0, d_1 jsou celá čísla, $d_0 + d_1 \theta = 0$. Chceme: $d_0 = d_1 = 0$. Předpokládejme, že $d_1 \neq 0$. Pak $\theta = \frac{-d_0}{d_1}$. Jelikož čísla d_0, d_1 jsou celá, je θ číslo racionální. To je spor s 9.1.6. Nutně tedy $d_1 = 0$. Pak $d_0 + 0 \cdot \theta = 0$, $d_0 = 0$.
KAPITOLA 9. PŘÍKLADY OKRUHŮ

Nechť d je bezčtvercové celé číslo, $d \neq 1$. Připomeňme, že

$$
\theta = \begin{cases}
 \sqrt{d} & \text{pokud } d \equiv 2 \,(4) \text{ nebo } d \equiv 3 \,(4) \\
 \frac{1 + \sqrt{d}}{2} & \text{pokud } d \equiv 1 \,(4)
\end{cases}
$$

Položme

$$
R_d = \mathbb{Z}[\theta]
$$

Okruh R_d nazýváme **okruh kvadratických celých čísel**.

Dle 9.1.7 je θ algebraické celé číslo stupně 2. Věta 8.3.12 pak dává:

$$
R_d = \{ a + b\theta \mid a, b \in \mathbb{Z} \},
$$

přičemž vyjádření prvků okruhu R_d ve tvaru $a + b\theta$, kde a, b jsou celá čísla, je jednoznačné.

Následující tvrzení ospravedlňuje název "okruh kvadratických celých čísel".

9.1.8. Tvrzení. Nechť d je bezčtvercové celé číslo, $d \neq 1$. Pak platí: každý prvek okruhu R_d je algebraické celé číslo stupně nejvýše 2.

Důkaz. Nechť $\alpha \in R_d$. Je $\alpha = a + b\theta$ pro nějaká celá čísla a, b. Chceme: α je algebraické celé číslo stupně nejvýše 2. Rozlišíme dva případy:

1. $b = 0$:
 Je $\alpha = a + 0 \cdot \theta = a + 0 = a$, takže α je celé číslo a tedy α je algebraické celé číslo stupně 1.

2. $b \neq 0$:
 Jistě α je komplexní číslo (protože θ je komplexní číslo, a, b jsou celá čísla). Ukážeme, že α je algebraické celé číslo stupně 2. Musíme ukázat, že α splňuje podmínky uvedené v definici 8.3.10.

 (a) Chceme: Existují celá čísla k_0, k_1 taková, že $k_0 + k_1\alpha + \alpha^2 = 0$.
 Jelikož θ je algebraické celé číslo stupně 2 (viz 9.1.7), existují celá čísla c_0, c_1 taková, že $c_0 + c_1\theta + \theta^2 = 0$. Položme $k_0 = a^2 + b^2c_0 - abc_1$, $k_1 = bc_1 - 2a$. Protože a, b, c_0, c_1 jsou celá čísla, jsou čísla k_1, k_2...
celá. Počítejme:

\[k_0 + k_1 \alpha + \alpha^2 = (a^2 + b^2c_0 - abc_1) + (bc_1 - 2a)(a + b\theta) + (a + b\theta)^2 \]
\[= a^2 + b^2c_0 - abc_1 + bc_1a + b^2c_1\theta - 2a^2 - 2ab\theta + a^2 + 2ab\theta + b^2\theta^2 \]
\[= b^2c_0 + b^2c_1\theta + b^2\theta^2 \]
\[= b^2c_0 + b^2c_1\theta + b^2(-c_0 - c_1\theta) \]
\[= b^2c_0 + b^2c_1\theta - b^2c_0 - b^2c_1\theta \]
\[= 0 \]

(b) Chceme: Pro všechna celá čísla \(d_0, d_1 \) platí: jestliže \(d_0 + d_1\alpha = 0 \), pak \(d_0 = d_1 = 0 \).
Nechť \(d_0, d_1 \) jsou celá čísla, \(d_0 + d_1\alpha = 0 \). Pak \(d_0 + d_1(a + b\theta) = 0, \)
\(d_0 + d_1a + d_1b\theta = 0, (d_0 + d_1a) + d_1b\theta = 0 \). Víme, že \(\theta \) je algebraické celé číslo stupně 2 a \(d_0 + d_1a, d_1b \) jsou celá čísla. Proto \(d_0 + d_1a = 0 \)
a \(d_1b = 0 \). Je \(b \neq 0 \), takže \(d_1b = 0 \) dává \(d_1 = 0 \). Pak \(d_0 + d_1a =
\(d_0 + 0 \cdot a = d_0 + 0 = d_0 \) a tedy \(d_0 = 0 \).

9.2 Okruh zbytkových tříd

9.3 Maticový okruh

9.4 Okruh polynomů
KAPÍTOLA 9. PŘÍKLADY OKRUHŮ
Kapitola 10

Základní pojmy teorie dělitelnosti

10.1 Relace dělitelnosti
10.2 Největší společný dělitel
10.3 Ireducibilní prvky, prvočísla
10.4 Počítání modulo
Kapitola 11

Eukleidovské obory

11.1 Definice eukleidovského oboru
11.2 Příklady eukleidovských oborů
11.3 Eukleidův algoritmus
11.4 Jednoznačný rozklad na součin irreduci-
 bilních prvků
11.5 Základní věta aritmetiky
11.6 Čínská věta o zbytcích
Kapitola 12

Gaussovské obory

12.1 Definice gaussovského oboru

12.2 Příklady gaussovských oborů

12.3 Největší společný dělitel prvků gaussovského oboru
Kapitola 13

Kořeny polynomů

13.1 Kořeny polynomů, jejich násobnost a počet
13.2 Základní věta algebry a její důsledky
13.3 Algebraické a transcendentní prvky
13.4 Binomické rovnice
13.5 Kvadratické a kubické rovnice
13.6 Kořeny polynomů nad celými čísly
13.7 Hornerovo schéma
Kapitola 14

Konečná tělesa

14.1 Charakteristika tělesa, prvotěleso
14.2 Počet prvků konečného tělesa
14.3 Počet ireducibilních monických polynomů daného stupně
14.4 Konstrukce konečných těles
KAPITOLA 14. KONEČNÁ TĚLESA
Literatura

[3] Martin Kuřil, studijní text *Lineární algebra*

 http://katmatprf.ujepurkyne.com/materialy/KMA_kuril_LINALGkapitola01.pdf
 http://katmatprf.ujepurkyne.com/materialy/KMA_kuril_LINALGkapitola02.pdf
 http://katmatprf.ujepurkyne.com/materialy/KMA_kuril_LINALGkapitola03.pdf
 http://katmatprf.ujepurkyne.com/materialy/KMA_kuril_LINALGkapitola04.pdf
 http://katmatprf.ujepurkyne.com/materialy/KMA_kuril_LINALGkapitola05.pdf
 http://katmatprf.ujepurkyne.com/materialy/KMA_kuril_LINALGkapitola06.pdf
 http://katmatprf.ujepurkyne.com/materialy/KMA_kuril_LINALGkapitola07.pdf
 http://katmatprf.ujepurkyne.com/materialy/KMA_kuril_LINALGkapitola08.pdf

 poznámka: text k elektronické publikaci připravil Jan Šimek