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1. Preliminaries

2. Optimization Problem

2.1. General concept. Let K ⊂ Rn and consider a function f : K →
R. Point p ∈ K is called a local minimum (local maximum) point
of function f if there exists such a neighborhood U of point p that
f(q) ≥ f(p) (f(q) ≤ f(p)) for every q ∈ U∩K. If these inequalities hold
for every q ∈ K then we say that p is (global) minimum (maximum)
of f in K. We will speak further about minimum (maximum) points
supposing local minimum (maximum) ones.

The fundamental result lying in the base of all theory of optimization
is the following.

Theorem 1 (Weierstrass). Let function f : K → R is continuous
and K ⊂ Rn is closed and bounded set. Then there exits minimum
(maximum) point of f in K.

The following two examples show that both conditions on K in The-
orem 1 are important.

Example 1. Let K = [−1, 0)∩ (0, 1] (it is not closed) and f(x) = 1/x
for x ∈ K. We see that

lim
x→−0

f(x) = −∞, lim
x→+0

f(x) = +∞

and f has neither minimum nor maximum.

Example 2. Let K = R (it is not bounded), f(x) = x. Its evident that
f has neither minimum nor maximum.

Weierstrass theorem however gives no constructive method of finding
minimum (maximum) points. In the remaining part of section we will
assume that all functions have continuous partial derivatives up to
order two which is a subject of classical optimization theory and in
this situation we can build more constructive theory.
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2.2. Multivariable optimization without constrains. Let consi-
der particular case of optimization problem where there are no any
constraints. This means that we have function

f : Rn → R
defined on whole coordinate space Rn. Such a function can have no
minimum or maximum points at all (see previous examples), but we
have following necessary condition of their existence.

Theorem 2 (Necessary condition of minimum (maximum)). Let p ∈
Rn is a maximum or minimum point of function f . Then

(1)
∂f

∂x1
(p) =

∂f

∂x2
(p) = . . . =

∂f

∂xn
(p) = 0.

The point p satisfying condition (1) is called stationary. Theorem 2
shows that we need to search minimum and maximum points among
stationary ones. It is sometime more convenient to rewrite equation
(1) in other form. Remind that first differential of function f in point
p is the following linear form of variables h1, h2, . . . , hn:

(2) df(p) =
n∑
i=1

∂f

∂xi
(p)hi.

Notice that variables hi are often replaced with coordinate differentials:
hi = dxi, i = 1, . . . , n. This is rather informal but very convenient in
computational practice. Then formula (2) becomes

df(p) =
n∑
i=1

∂f

∂xi
(p)dxi.

Then necessary condition (1) of point to be minimum (maximum) point
can be rewrited as

df(p) = 0.

When stationary points are indeed maximum or minimum points?
To formulate sufficient conditions we need to define second differentials
of function f at a point p: a quadratic form of variables h1, . . . , hn

d2f(p) =
n∑
i=1

n∑
j=1

∂2f

∂xi∂xj
(p)hihj.

Let Q(h1, . . . , hn) be a quadratic form defined by symmetric coefficients
qij = qji ∈ R:

Q(h1, . . . , hn) =
n∑
i=1

n∑
j=1

qijhihj.
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Figure 1. Paraboloids: maximum, minimum and sad-
dle point.

We say that Q is positive-definite (negative-definite) if Q(h1, . . . , hn) >
0(< 0) for all h1, . . . , hn ∈ R such that h21 + h22 + . . .+ h2n ̸= 0.
The following well-known theorem gives an effective instrument for

checking if quadratic form is positive- (negative-) definite.

Theorem 3 (Sylvester’s criterion). Quadratic form Q defined by sym-
metric matrix (qij)

n
i,j=1 is positive-definite (negative-definite) if and

only if all upper left k-by-k corners of Q have positive determinants
(have determinants of sign (−1)k), for k = 1, . . . , n.

Second differential of function f in point p is a quadratic form which
is defined by symmetric matrix:

d2f(p) ∼ Hess(f) =


∂2f
∂x21

(p) ∂2f
∂x1∂x2

(p) . . . ∂2f
∂x1∂xn

(p)
∂2f

∂x1∂x2
(p) ∂2f

∂x22
(p) . . . ∂2f

∂x2∂xn
(p)

...
...

. . .
...

∂2f
∂x1∂xn

(p) ∂2f
∂x2∂xn

(p) . . . ∂2f
∂x2n

(p)


matrix Hess(f) is called Hesse matrix of function f in point f .

Theorem 4 (Sufficient condition of minimum (maximum)). Let p is
stationary point of f . If quadratic form d2f(p) is positive-definite
(negative-definite) then p is a minimum (maximum) point.

By Theorem 4 to check if d2f(p) is positive- (negative-) definite we
can use Sylvester’s criterion for Hesse matrix of f in point p.

Example 3 (Three paraboloids).

z = f(x, y) = −x2 − y2.
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Here we have only one stationary point O(0, 0, 0) and second differential
in O is:

d2f(O) = −2h21 − 2h22 < 0

for all (h1, h2) ̸= (0, 0). So d2f(O) is negative-definite and O is a
maximum point (Fig. 1, left).

z = f(x, y) = x2 + y2.

Here we also have only one stationary point O(0, 0, 0) and second dif-
ferential in O is:

d2f(O) = 2h21 + 2h22 > 0

for all (h1, h2) ̸= (0, 0). So d2f(O) is positive-definite and O is a
minimum point (Fig. 1, middle).

z = f(x, y) = −x2 + y2.

Here we also have only one stationary point O(0, 0, 0) and second dif-
ferential in O is:

d2f(O) = −2h21 + 2h22 > 0

for all (h1, h2) ̸= (0, 0). We see that second differential has no definite
sign: d2f(O) > 0 if h1 = 0, h2 ̸= 0 and d2f(O) < 0 if h1 ̸= 0, h2 = 0.
This quadratic form is called indefinite and this point is called ”saddle
point”; this is neither maximal nor minimum point (Fig. 1, right).

Situation we yet consider is very restrictive: indeed, almost always
in real problems we have constraints. But we already can consider very
useful example which is very important in many applications including
machine learning.

Example 4 (Least squares and linear regression model). Let in some
experiment the observation consists of vector x̄ = (x1, . . . , xp) of p pa-
rameters (regressors) and a scalar respond y. For instance, we measure
weight y of person depending of two parameters: height x1 and age x2.
Usually data consists of a collection of observations yi which depends
of collection of regressors x̄i, i = 1, . . . , n, where n is a relatively big
number comparing to number of parameters. In our example we can
have more than thousand people tested for weight.

In the linear regression model we assume that response variable is
the linear function of regressors:

yi = β1xi1 + β2xi2 + . . .+ βpxip + εi, i = 1, . . . , n.

Coefficients βi are unknown parameters of a model, εi are errors of
observations.
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We can not expect that all errors can vanish; always there are errors
during measurement, or there are some extra factors which are not in-
cluded in model. The problem is: how to estimate unknown parameters
in the most reasonable way using observations we have?

In the least squares method we postulate that unknown parameters
minimize the following sum of squares of errors:

S(β1, β2, . . . , βp) =
n∑
i=1

ε2i =
n∑
i=1

∣∣∣∣∣yi −
p∑

k=1

βkxik

∣∣∣∣∣
2

Applying necessary condition theorem we have:

∂S

∂βj
= −2

n∑
i=1

xij

(
yi −

p∑
k=1

βkxik

)
= 0, j = 1, . . . , p.

Collect all observations of parameter with number k to one vector:
Xk = (x1k, x2k, . . . , xnk) and let Y = (y1, y2, . . . , yn) be vector of re-
sponses over all observations. Let denote:

gkl = ⟨Xk, Xl⟩ =
n∑
i=1

xikxil,

ak = ⟨Xk, Y ⟩ =
n∑
i=1

xikyi.

Then we can rewrite last equations as follows:

(3) gj1β1 + gj2β2 + . . . gjpβp = aj, j = 1, . . . , p.

Coefficients gjk consists of all pairwise scalar products of vectors X1,
. . ., Xp and generates Gram matrix G of system of vectors Xk. From
linear algebra we know that this matrix is positive-definite (and in-
vertible) if there is no any nontrivial linear combination of vectors
X1, . . . , Xp. In this case

(4)


β̂1
β̂2
. . .

β̂p

 = G−1


a1
a2
. . .
ap


In practice we do not need to compute G, usually more reasonable meth-
ods (Gauss method for example) are used for solution equation (3). The

symbol β̂k is used to emphasize that we find only estimate of unknown
coefficients βk.
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Figure 2. Paraboloids: maximum, minimum and sad-
dle point.

Finally we need to check that (4) gives minimum of S. Applying
Theorem 4 we obtain:

∂2S

∂βk∂βl
= 2

n∑
i=1

xikxil = 2gkl, k, l = 1, . . . , p.

So quadratic form d2S is defined by Gram matrix 2G which is positive-
definite and (4) describes minimum point indeed.

2.3. Multivariable optimization with equality constraints by
method of Lagrange multipliers. Let we need to minimize (maxi-
mize) f(x, y) under the constraint g(x, y) = 0 (let us begin with two-
dimensional case).

Geometrical interpretation: g(x, y) = 0 is a curve Γ on the plane with
coordinates (x, y). Minimum principle: if p ∈ Γ is a minimum point
of f then level set f−1(f(p)) is tangent to Γ in point p. Look at Fig.
2, where illustration of this principle is done. Here c1 < c2 < c3 < c4
and we see intersections of curve Γ with level-sets f(x, y) = const of
function f . Function increases from right bottom corner to left upper
corner; we see four local extremum point where level-sets of f are
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tangent to curve Γ. There are: one global maximum point, lying on
the level-set f(x, y) = c4; one global minimum point lying on level-set
f(x, y) = c1; one local minimum point lying on the level-set f(x, y) = c2
and one local maximum point lying on the level-set f(x, y) = c3).

Let formulate this in analytic way. Normal to Γ in a point p is

∇pg =

(
∂g

∂x
(p),

∂g

∂y
(p)

)
,

normal to level set f = f(p) is

∇pf =

(
∂f

∂x
(p),

∂f

∂y
(p)

)
.

Tangent condition means ∇pg and ∇pf are proportional. Hence there
exists λ ∈ R such that

(5) 0 = ∇pf + λ∇pg = ∇p(f + λg).

We come to some new function (which is called Lagrange function)
L(x, y, λ):

L(x, y, λ) = f(x, y) + λg(x, y),

which depends of three variables x, y and λ. New variable λ is called
Lagrange multiplier. Condition (5) means that

∂L

∂x
=
∂L

∂y
= 0.

One can express constraint g(x, y) = 0 as

∂L

∂λ
= 0.

So we obtain the following necessary condition for minimum problem
with one equation constraint.

Theorem 5. Let p is minimum (maximum) point of f under constraint
g = 0. Then there exists some λ ∈ R such that p, λ is a stationary point
for Lagrange function

L(p, λ) = f(p) + λg(p).

More specifically, the following equations hold:

∂L

∂x
(p) =

∂L

∂y
(p) = g(p) = 0.

Now formulate theorem for more general case of several equality
constraints.
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Theorem 6 (Necessary conditions for n variables and k constraints).
Let f, g1, . . . , gk : Rn be continuously differentiable functions. Let point
p = (x1, . . . , xn) is a minimum (maximum) point of function f with
constraints:

g1(p) = g2(p) = . . . = gk(p) = 0.

Then there exist real numbers λ1, λ2, . . . , λk (Lagrange multipliers) such
that point (x1, . . . , xn, λ1, . . . , λk) is a stationary for Lagrange function

L(x1, . . . , xn, λ1, . . . , λk) = f(x1, . . . , xn)+

λ1g1(x1, . . . , xn) + . . .+ λkgk(x1, . . . , xn).

More specifically, the following equations hold:

∂L

∂x1
(p) = . . . =

∂L

∂xn
(p) = g1(p) = . . . = gk(p) = 0.

Example 5. Let

f(x, y, z) =
x2

a2
+
y2

b2
+
z2

c2
,

g(x, y, z) = x2 + y2 + z2 − 1,

a > b > c > 0.

Consider a problem of finding minimum and maximum points of func-
tion f under the constrain g = 0. Geometrically, minimum point is a
tangent point of minimal ellipsoid intersected with unit sphere and with
axes proportional to triple a, b, c; maximum point is a tangent point of
maximal ellipsoid intersected with unit sphere and with axes propor-
tional to triple a, b, c.

Applying Theorem 6 we construct Lagrange function

L =
x2

a2
+
y2

b2
+
z2

c2
+ λ(x2 + y2 + z2 − 1)

and obtain system of algebraic equations:
x

a2
+ λx = 0,

y

b2
+ λy = 0,

z

c2
+ λz = 0,

x2 + y2 + z2 = 1.

Solving this system we find following stationary points of form

(x, y, z, λ) :

(
±1, 0, 0,− 1

a2

)
,

(
0,±1, 0,− 1

b2

)
,

(
0, 0,±1,− 1

c2

)
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Investigating these points we can understand that the first is minimum,
the last is maximum points and the middle neither minimum nor max-
imum.

Now formulate sufficient conditions of minimum (maximum) problem
with equation constraint.

Theorem 7. A sufficient condition for f(p) to have minimum (maxi-
mum) in stationary point p under the constraints g1(p) = . . . = gk(p) =
0 is that the quadratic form

d2L(p, λ) =
n∑
i=1

n∑
j=1

∂2L

∂xi∂xj
(p, λ1, . . . , λk)hihj

is positive-definite (negative-definite) for all non-trivial (h1, h2, . . . , hn)
for which the following constraints hold:

dgl(p) =
n∑
i=1

∂gl
∂xi

(p)hi = 0, l = 1, . . . , k.

Returning to Example 5 we have constraint xdx+ydy+zdz = 0 and

d2L = 2

(
(dx)2

a2
+

(dy)2

b2
+

(dz)2

c2
+ λ((dx)2 + (dy)2 + (dz)2)

)
.

Then

d2L(±1, 0, 0) = 2

(
1

b2
− 1

a2

)
(dy)2 + 2

(
1

c2
− 1

a2

)
(dz)2 > 0

and

d2L(0, 0,±1) = 2

(
1

a2
− 1

c2

)
(dx)2 + 2

(
1

b2
− 1

c2

)
(dy)2 < 0

(remind that a > b > c > 0). Therefore (±1, 0, 0) are minimum and
(0, 0,±1) are maximum points. For remaining two points we can see
that

d2L(0,±1, 0) = 2

(
1

a2
− 1

b2

)
(dx)2 + 2

(
1

c2
− 1

b2

)
(dz)2

is indefinite and points are neither maximum nor minimum ones.

2.4. Multivariable optimization with inequality constraints. In
this subsection consider the problem of minimizing (maximizing) func-
tion f(p), p = (x1, . . . , xn) ∈ Rn under the inequality constraints
g1(p) ≤ 0, g2(p) ≤ 0, . . . , gk(p) ≤ 0.

There is very simple trick that reduces this problem to equality con-
straint. Let introduce new set of variables q = (y1, . . . , yk) ∈ Rk. Then
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previous problem is equivalent to a problem of minimizing (maximiz-
ing) of f(p) with equality constraints

gl(x1, . . . , xn) + y2l = 0, l = 1, . . . , k.

For this problem we can apply previous necessary and sufficient condi-
tions with Lagrange multipliers λ1, . . . , λk and Lagrange function

L(p, q, λ) = f(x1, . . . , xn) + λ1(g1(x1, . . . , xn) + y21)+

. . .+ λk(gk(x1, . . . , xn) + y2k).

We can use of cause combination equality and inequality constraints
by the same trick.

Example 6. Let find maximum point of function

f(x, y, z) =
x2

a2
+
y2

b2
+
z2

c2
, a > b > c

under the constraint
x2 + y2 + z2 ≤ 1.

Introduce new variable w and replace old inequality constraint with new
equality:

x2 + y2 + z2 + w2 − 1 = 0.

Now consider Lagrange multiplier λ and Lagrange function

L(x, y, z, w) =
x2

a2
+
y2

b2
+
z2

c2
+ λ(x2 + y2 + z2 + w2 − 1).

Necessary conditions are:
x

a2
+ λx = 0,

y

b2
+ λy = 0,

z

c2
+ λz = 0,

λw = 0,

x2 + y2 + z2 = 1− w2.

Solving this system of algebraic equation we obtain following points of
form (x, y, z, w, λ): (0, 0, 0,±1, 0), (±1, 0, 0, 0,− 1

a2
), (0,±1, 0, 0,− 1

b2
)

(0, 0, 0,±1,− 1
c2
). If we compare with the example 5 we can see than

replacing equality constraint with inequality one adds new stationary
point.

Now let check sufficient conditions.

d2L(±1, 0, 0, 0) = 2

(
1

b2
− 1

a2

)
(dy)2 + 2

(
1

c2
− 1

a2

)
(dz)2 > 0
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and

d2L(0, 0,±1, 0) = 2

(
1

a2
− 1

c2

)
(dx)2 + 2

(
1

b2
− 1

c2

)
(dy)2 < 0

give minimum and maximum points.

d2L(0,±1, 0, 0) = 2

(
1

a2
− 1

b2

)
(dx)2 + 2

(
1

c2
− 1

b2

)
(dz)2

is indefinite as in previous example. Finally

d2L(0,±1, 0, 0) = 2

(
(dx)2

a2
+

(dy)2

b2
+

(dz)2

c2

)
> 0

corresponds to minimum point. So we have only two maximum points
x = 0, y = 0, z = ±1.

2.5. Linear Programming. One particular case of multivariable op-
timization is a linear programming problem which can be stated in the
following form:

f(x1, x2, . . . , xn) = c1x1 + c2x2 + . . .+ cnxn −→ min

under the constraints

a11x1 + a12x2 + . . .+ a1nxn = b1,

a21x1 + a22x2 + . . .+ a2nxn = b2,

...

am1x1 + am2x2 + . . .+ amnxn = bm;

x1 ≥ 0,

x2 ≥ 0,

...

xn ≥ 0,

(6)

where cj, bj and aij, i = 1, . . . ,m, j = 1, . . . , n are known constants
and xj are unknown variables.

It is convenient to reformulate this problem in matrix form:

f(x) = cTx −→ min

under the constraints

Ax = b,

x ≥ 0,
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where

x =


x1
x2
...
xn

 , b =


b1
b2
...
bn

 , c =


c1
c2
...
cn

 ,

A =


a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
. . .

...
an1 an2 . . . ann

 .

We say that x is feasible solution if Ax = b and x ≥ 0, that is x
satisfies to constraints. A feasible solution that optimizes the function
f is said optimal solution.
Remarks. The above classical statement of linear programming

problem may seem limited but it is not, as the following remarks show.
1. Replacing f by −f we can consider maximization problem instead

of minimization one.
2. In some real problems there are no restrictions xi ≥ 0 for some of

variables xi. But for any variable xi unrestricted in sign we can express
it as xi = x′i − x′′i replacing xi by new variables x′i ≥ 0 and x′′i ≥ 0.
3. One can formulate problem involving inequalities of type

(7) ai1x1 + ai2x2 + . . .+ ainxn ≤ bi.

together with equalities. Adding new nonnegative variable xn+1 ≥ 0
we can convert (7) to equality

(8) ai1x1 + ai2x2 + . . .+ ainxn + xn+1 ≤ bi.

The same idea can be used in case inequality with opposite sigh with
respect to (7).

Consider geometric interpretation of linear programming problem
which is the most obvious in case k = n−m = 2.

Example 7. Let k = n−m = 2. In this case we always can choose in-
dependent variables, say x1, x2 such that all other variables (x3, . . . , xn)
can be be found as linear combinations of x1, x2 from linear constraint
Ax = b:

x3 = α31x1 + α32x2 + β3 ≥ 0,

x4 = α41x1 + α42x2 + β4 ≥ 0,

...

xn = αn1x1 + αn2x2 + βn ≥ 0,

(9)
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for some constants αij, βi. Now we can represent values of independent
variables x1, x2 by a point on the plane with coordinates (x1, x2).

Because of constraint x ≥ 0, any feasible solution has point (x1, x2)
lying in the upper right quadrant Q1 of the plane. Inequalities in (9)
implies that we have some finite number of m half-planes and intersec-
tion of all this half-planes with Q1 gives the set F of feasible solutions
(may be empty).

Now let come back to function f . Using (9) we can express f as
function of independent variables x1, x2:

f(x1, x2) = γ1x1 + γ2x2 + γ3 −→ min .

The level-sets of function f are lines, orthogonal to vector n = (γ1, γ2).
Going along to n we increase function f and going in opposite direction
(−n) we decrease function f . Now it is clear that if minimum exists
then set of optimal solutions (x1, x2) has to contain some ”corner” point
of F (such a point is said extreme point of F ). If it is not unique then
F contains segment connecting to corner points.

returning from geometry to algebra let us note that corner point lies
at least on two lines defined by equations in (9). It follows that unique
optimal solution satisfies equations xi = xj = 0 for some indexes i, j.
Not unique solution is defined by to corner points, that is by two solu-
tions of type xi = xj = 0 for some i, j.

So the principal scheme of solution of linear programming problem
is following: iterate over all pairs of indices i, j, substitute xi = xj = 0
and solve obtaining system of equations, choosing point with minimal
f .

The next theorem shows that general case works in the same way.

Theorem 8. Let k = n−m. If an optimal solution of linear program-
ming problem (?) exists, then minimum of function f is attained on
those x = (x1, . . . , xn) for which at least k variables are equal to zero
and all other are positive.

In real problems one has a huge numbers n of variables and m of
constraints. In this case iteration over all selections of k = n − m
variables form the set of n variables which equals to a extremely big
number (

n
m

)
=

n!

(n−m)!m!
.

There are exist very efficient algorithms (simplex-method, genetic algo-
rithms, etc.) of finding optimal solution of linear programming problem
but these questions are outside the scope of our course.
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2.6. Dynamic programming. Dynamic programming is a method
of solution of some optimization problems which can be divided into
more simple sequential steps. We consider here only several examples
of using dynamical programming.

Let variable t changes between values 0 and T > 0 (usually t repre-
sents a time variable). Consider two monotonic continuous functions
a ≤ x(t) ≤ b, c ≤ y(t) ≤ d. Consider the following optimization
problem:

F (T, x(t), y(t)) =

∫ T

0

f(x(t), y(t))dt −→ min

under the constraints

x(0) = a, x(T ) = b, a ≤ x(t) ≤ b, for all 0 ≤ t ≤ T,

y(0) = c, y(T ) = d, c ≤ y(t) ≤ d, for all 0 ≤ t ≤ T.

Remark that variables which need to be varied for optimization of F
are two functions x(t), y(t) and one variable T .

Example 8 (The fastest trajectory problem). Consider plane with
coordinates x and y. Let A = (a, c) and B = (b, d) be two fixed points
on the plane. Let Ω = {(x, y)|a ≤ x ≤ b, c ≤ y ≤ d} be rectangular
domain in the plane.

Introduce function v(x, y) > 0 defined in Ω which represents the
signal propagation speed in domain Ω. Define function f :

f(x, y) =
1

v(x, y)
.

Then

F =

∫ S

0

ds

v(x(s), y(s))

is a time of propagation of signal from point A = (x(0), y(0)) to point
B = (x(S), y(S)) which has to be minimized in the above problem state-
ment (note that here t = s and T = S have physical dimension of a
distance, not a time; and x, y are arbitrary coordinates on the plane,
not necessarily flat!).

Example 9 (Two well logs correlation problem). In the notations of
previous example let interpret x and y as depth coordinate in two oil
wells. Consider result of measurement of some geophysical field along
the well (say electrical resistance, radioactivity, etc.). We can repre-
sent two such measurement by two functions α(x) and β(y). Now the
problem arise to correlate this two wells: to understand what segments
in x and y correspond to the same oil formation.
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Mathematically we correlate variables x and y by some parameter t,
0 ≤ t ≤ T such that point x(t) corresponds to a point y(t). We want
to find such a correlation that α(x(t)) is the most closed to β(y(t)). So
let

f(x, y) =
1

T
|α(x)− β(y)|2.

We come to a problem of minimizing of a function

F =
1

T

∫ T

0

|α(x(t))− β(y(t))|2dt

over all feasible T, x(t), y(t).

In most applications we need not find exact solution, we only want
to find good approximation. So we can first replace our problem by
their discrete analogue and then try to solve it.

Let 0 ≤ ik ≤ N , 0 ≤ jk ≤ M , 0 ≤ k ≤ T . Consider some function
f(x, y) and state the following optimization problem

F =
T∑
k=0

f(ik, jk) −→ min,

under the constraints

i0 = N, iT = 0, 0 ≤ ik ≤ N for all 0 ≤ k ≤ T,

j0 =M, jT = 0, 0 ≤ jk ≤M for all 0 ≤ k ≤ T,

ik ≥ ik+1 ≥ ik + 1, for all 0 ≤ k ≤ T − 1,

jk ≥ jk+1 ≥ jk + 1, for all 0 ≤ k ≤ T − 1.

(10)

The variables which are needed to be optimized are sequences ik, jk
and number T . The next theorem describes algorithm of dynamical
programming for this problem (here function argminf denotes a some
point in which function f has minimal value).

Theorem 9. The following formulas allows to find optimal solution to
problem (10).

S0,0 = 0,

S1,0 = f(1, 0),

S0,1 = f(0, 1),

S1,1 = min{S1,0;S0,1}+ f(1, 1),

Si,j = min{Si−1,j;Si,j−1;Si−1,j−1}+ f(i, j), for 1 ≤ i ≤ N, 1 ≤ j ≤M,

i0 = N, j0 =M,

(it+1, jt+1) = argmin{Sit−1,jt ;Sit,jt−1;Sit−1,jt−1}, 0 ≤ t ≤ T,

where T is defined by condition iT = 0, jT = 0.
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3. Lebesgue integration

Lebesgue integration is the most convenient method of integration
of functions which allows to consider the most wide spaces of functions
used in applications. We consider also Riemann integration because of
its very intuitive meaning. Both methods of integration are based on
concepts of Jordan and Lebesgue measures, for which we will begin.

3.1. Jordan and Lebesgue measures in R. Jordan measure (which
intuitively is the most clear) is just a accurate formulation of concept of
length (or area in dimension two, or volume in dimension three) which
dates back to antiquity.

We will define Jordan measure λ going from simplest subsets of R to
more complicated. First of all let J is a segment of one of form: [a, b],
[a, b), (a, b] or (a, b), a ≤ b. For such simplest subset we put

λ(J) = b− a.

Now if J is a union of pairwise non-intersecting segments J1, . . . , Jn
then

λ(J) =
n∑
i=1

λ(Ji).

We will call such sets elementary.
Now let A ⊂ R is arbitrary subset. Set A is said Jordan measurable if

for every ε > 0 there exists such elementary sets Aε, Bε which satisfies

Aε ⊂ A ⊂ Bε,

λ(Bε\Aε) < ε.

It can be proved that for Jordan measurable set λ(Aε) and λ(Bε) have
limits if ε→ 0 and

lim
ε→0

λ(Aε) = lim
ε→0

λ(Bε).

This common limit is said to be equal to λ(A), the Jordan measure of
A.

Example 10. Let A = { 1
n
|n ∈ N} is infinite countable set. Prove that

A is Jordan measurable and λ(A) = 0.

Lemma 1 (Properties of Jordan measure). (a) If A and B are Jor-
dan measurable and have empty intersection, then A ∪ B is Jordan
measurable and

λ(A ∩B) = λ(A) + λ(B).
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(b) If A1, A2, . . . , An are Jordan measurable, Ai ∩ Aj = ∅ for every
i ̸= j then A = ∪ni=1Ai is Jordan measurable and

λ(A) =
n∑
i=1

λ(Ai).

(c) If A1, A2, . . . , An, . . . are Jordan measurable (infinite countable
family of sets), An ∩ Am = ∅ for every m ̸= n and A = ∪∞

n=1An is
Jordan measurable then

λ(A) =
∞∑
n=1

λ(An).

Notice the difference between (b) and (c): the (b) guarantees that
union of finite family of non-intersecting Jordan measurable sets is
measurable, but in (c) we need to state in addition the Jordan measur-
ability of infinite union. This in fact the main inconvenience of Jordane
measure: the infinitely countable union of measurable sets may be not
measurable. The next two example shows that this indeed may hap-
pens.

Example 11. If ⊂ R is Jordan measurable then A is bounded (prove
it). In particular, the set Q of all rational numbers is not Jordan
measurable.

Example 12. Let A = Q ∩ [0, 1] is the set of all rational numbers be-
longing to segment [0, 1]. It obviously is bounded and infinite countable.
But A is not Jordan measurable. Indeed, assuming A is Jordan mea-
surable and taking ε = 0.5 we can find two elementary sets B1, B2 such
that B1 ⊂ A ⊂ B2 and λ(B2\B1) < 0.5. Set B2\B1 is again elementary
and λ([0, 1]) = 1 implies there exists 0 < x < y < 1, [x, y] ∩ B2 = ∞.
Then there exists r ∈ Q, x < r < y. Therefore r /∈ B2 and r /∈ Q — a
contradiction.

The Lebesgue measure µ improves this defect of Jordan measure.
For segments and for elementary sets J we put

µ(J) = λ(J),

that is Lebesgue measure is just a length of elementary set.
Now define the outer measure µ∗ of any A ⊂ R:

µ∗(A) = inf

{
∞∑
n=1

µ(Cn)| for all countable (possibly infinite!)

family of elementary sets Cn, n = 1, . . . , such that A ⊂ ∪∞
n=1Cn

}
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The most important thing here is that we consider infinite countable
covers of A by elementary sets, but not only finite ones.

Now we can say that set A ⊂ R is Lebesgue measurable if for every
ε > 0 there exists elementary set Aε which satisfies condition:

(11) µ∗(A△Aε) < ε

(remind that A△Aε = A\Aε ∪ Aε\A is a symmetric difference of two
sets). It can be proved that under the condition (11) there exists limit
λ∗(Aε) at ε→ 0 and we set Lebesgue measure µ of A to be equal

µ(A) = lim
ε→0

µ∗(Aε).

It is important in this definition that we allow set Aε to be located in re-
lation to A in an arbitrary way and consider then symmetric difference
△ of two sets A and Aε.

Example 13. The Lebesgue measure of set Q of rational numbers is
equal to zero.

The best way ”to fill” difference between Jordan and Lebesgue mea-
sures is to understand what is set which has Lebesgue measure zero.

Lemma 2. (a) A set A ⊂ R has Lebesgue measure zero (or simply is a
null set) if and only if for every ε > 0 there exists infinite countable
family of intervals Jn = (an, bn), n ∈ N such that

A ⊂ ∪∞
n=1Jn,

∞∑
n=1

|bn − an| < ε.

(b) A set A ⊂ R has Jordan measure zero if and only if for every
ε > 0 there exists finite family of intervals Jn = (an, bn), n ∈ N such
that

A ⊂ ∪∞
n=1Jn,

∞∑
n=1

|bn − an| < ε.

In particular, any countable set is null set (prove it!).

Lemma 3. The following properties of Lebesgue measure take place.
(a) If An, n ∈ N are Lebesgue measurable and pairwise non-inter-

secting then ∪∞
n=1An is Lebesgue measurable and

µ(∪∞
n=1An) =

∞∑
n=1

µ(An).
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(b) Compliment, countable union and countable intersection of Le-
besgue measurable sets are again Lebesgue measurable.

(c) Any subset of null set is again a null set (and in particular again
Lebesgue measurable).

3.2. Jordan and Lebesgue measures in Rn. All constructions in
general case of Rn are the same as in case of R with the only difference
that we need to re-define the elementary sets.

Now the simplest set is ”parallelepiped”:

P = I1 × I2 × . . .× In = {(x1, x2, . . . , xn)|xi ∈ Ii, i = 1, . . . , n},
where Ii is a segment of one of forms: [ai, bi], [ai, bi), (ai, bi], (ai, bi),
ai ≤ bi. Then we call elementary set a union J = P1 ∪ P2 ∪ . . .∪ Pm of
parallelepipeds P1, P2, . . . , Pm such that Pi ∩ Pj = ∅.
We define Jordan measure of elementary sets in the following way:

λ(P ) = |b1 − a1| · |b2 − a2| · . . . · |bn − an| for parallelepiped P,

λ(J) =
m∑
k=1

λ(Pk) for elementary set J.

Remaining definitions and properties of Jordan and Lebesgue are the
same as in previous section.

I conclusion we give a statement showing the connection between
Lebesgue measures in Rn for different n.

Lemma 4. Let A ⊂ Rn and B ⊂ Rm are Lbesgue measurable sets,
then Cartesian product A×B ⊂ Rn+m = Rn × Rm is measurable and

µ(A×B) = µ(A)µ(B).

3.3. Riemann integral. Let f : [a, b] → R be a function defined on a
segment [a, b], −∞ < a < b < ∞. Define a tagged partition P (x, t) of
[a, b] to be two sequences of numbers {xi}ni=0 and {tj}nj=1 of the form

a = x0 < x1 < . . . < xn−1 < xn = b,

xi−1 ≤ ti ≤ xi, i = 1, . . . , n.

Segments [xi−1, xi] are called sub-intervals of partition. Define the mesh
of partition P (x, t):

(12) ∆(P ) = max
i=1,...,n

|xi − xi−1|.

Riemann sum of function f with respect to partition P (x, t) is
n∑
i=1

f(ti)(xi − xi−1).
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This sum has following geometric meaning. If f is positive on [a, b]
then Riemann sum is a sum of rectangles generated by two sides: sub-
interval [xi−1, xi] and vertical segment of length f(ti) passing through
coordinate ti. This sum approximates area of part of plane between
graph of function f and segment [a, b]. The more detailed partition the
more precise approximation should be. If we consider function f having
both positive and negative values the Riemann sum is an alternating
sum of areas with signs depending of up or below coordinate axe the
graph of f lies.

We say that Riemann integral of function f is equal to S if for every
ε > 0 there exist δ > 0 such that for any tagged partition P (x, t) of
segment [a, b] whose mesh is less than δ we have∣∣∣∣ n∑

i=1

f(ti)(xi − xi−1)− S

∣∣∣∣ < ε.

If Riemann integral for f exists then we say that f is Riemann inte-
grable and write

(13)

∫ b

a

f(x)dx = S.

This definition of Riemann integral differs from traditional one: it
is much more complicated technically to prove usually properties of
Riemann integral using this definition. We choose it because of more
transparency of geometrical idea.

Theorem 10. Function f : [a, b] → R is Riemann integrable if and
only if it is bounded and it is continuous everywhere except (Lebesgue)
null set.

Riemann integrability of function f : [a, b] → C is equivalent to
integrability of every function Re(f), Im(f) : [a, b] → R. In this case∫ b

a

f(x)dx =

∫ b

a

Re(f(x))dx+ i

∫ b

a

Im(f(x))dx.

One can define an Riemann integral for functions f : A ⊂ Rn → R
defined on Jordan measurable set A. To do this it is necessary only
to define tagged partition of A, the remaining part of definition is the
same. Usual way to do this is to consider A as finite union of Jordan
measurable sets such that every two set can intersect each other only by
common boundary. The accurate definition become complicated but
less meaningful. The similar problem is to extend definition to Jordan
non-measurable sets A or to whole R (this leads to concept of improper
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integral). We prefer stop here to speak about Riemann integral and
continue with more important Lebesgue integral.

3.4. Lebesgue integral. The main difference between Lebesgue inte-
gral and Riemann integral is that in case of Lebesgue integral we need
to use a finite partition of range of function f . Then Lebesgue sum
(analogue of Riemann sum) becomes more complicated: every term in
the sum may consist of union of rectangles with the same height. The
area of this union can be computed using notion of Lebesgue measure.
Now let give this definition in more details.

Let A ⊂ R is Lebesgue measurable. Function f : A → R is said
measurable if for any y ∈ R the pre-image f−1(y,∞) = {x ∈ A|f(x) >
y is Lebesgue measurable set.

Tagged partition P (y, t) of range of measurable function f : A → R
is given by two finite consequences yi, i = 0, . . . , n and tj, j = 1, . . . , n
such that

−∞ < y0 < y1 < . . . < yn < +∞,

yj−1 < tj < yj, j = 1, . . . , n.

As before, the mesh of P (y, t) is

∆(P (y, t)) = max
i=1,...,n

|yj − yj−1|.

Lebesgue sum of f with respect to tagged partition P (y, t) is
n∑
k=1

µ({x ∈ A|f(x) > ti})|yi − yi−1|

(remark that this definition is correct because f is measurable).
Now we say that Lebesgue integral of function f is equal to S if for

every ε > 0 there exists δ > 0 such that for any tagged partition P (y, t)
of range of f whose mesh is less than δ we have∣∣∣∣ n∑

k=1

µ({x ∈ A|f(x) > tk})(yk − yk−1)− S

∣∣∣∣ < ε.

If S exists then f is said Lebesgue integrable and we call S Lebesgue
integral, denoting it by ∫

A

f(x)dµ(x).

or even simply ∫
A

f(x)dx.

The set {x ∈ A|f(x) > tk} in this definition may have complicated
structure but it has well defined Lebesgue measure (by the way it
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is possible that this set is not Jordan measurable). This causes the
Lebesgue integral to be defined on a much wider class of functions
than Riemann integral. Note that the main reason for the superiority
of the Lebesgue integral over the Riemann integral is the assumption
of infinite countable unions when determining the measure of a set.

Because we have well defined concept of Lebesgue measure in Rn, we
can directly generalize definition of measurable function and Lebesgue
integral to the case of functions f : A ⊂ Rn → R or f : A ⊂ Rn → C.

Example 14. Let X ⊂ R is measurable and µ(X) = 0. Let f(x) =
g(x) for x /∈ X and f is Lebesgue integrable then g is also Lebesgue
intagrable and ∫ +∞

−∞
f(x)dµ(x) =

∫ +∞

−∞
g(x)dµ(x).

4. Introduction to functional analysis

4.1. Vector space. Set X is a vector space if there are two operations
on its elements: vector addition ”+” and multiplication ”λ·” by scalar
λ ∈ C. These operations should satisfy the following three groups
axioms:

(a1) (x+ y) + z = x+ (y + z) (associativity);
(a2) x+ y = y + x (commutativity);
(a3) there exists an element 0 ∈ X such that x + 0 = 0 + x = x

(existence of zero vector);
(a4) for every x ∈ X there exists −x ∈ V such that x + (−x) =

(−x) + x = 0 (existence of inverse vector);
(m1) 1 · x = x;
(m2) λ · (µ · x) = (λµ) · x;
(am1) λ · (x+ y) = λ · x+ λ · y;
(am2) (λ+ µ) · x = λ · x+ µ · y

for all x, y, z ∈ X;λ, µ ∈ C.
We say that set sequence e1, e2, . . . , en is a basis of X if for any vector

x ∈ X there exists unique sequence of numbers c1, c2, . . . , cn ∈ C such
that

x = c1e1 + c2e2 + . . .+ cnen.

Coefficients c1, . . . cn are called coordinates of x in the basis e1, . . . , en
and integer number n is a dimension of vector space X. It can be
proven that if basis exists then n does not depend of choice of basis.
In this case we speak about finite-dimensional vector space.
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The correspondence x 7→ (c1, c2, . . . , cn) identifies finite-dimensional
space X with the coordinate space Cn. Therefore space Cn is the
universal example of finite-dimensional vector space.

In many application the infinite-dimensional vector spaces are useful.
Let consider several examples of vector spaces.

Example 15 (Vector space of all sequences C∞). May be the simplest
case of infinite-dimensional vector space is the space X = C∞ consist-
ing of all sequences z = {zi}∞i=1. Every term zi is a coordinate of z and
operations + and λ· are defined coordinate-wise:

(z + w)i = zi + wi, (λ · z)i = λzi, i ∈ N.

Example 16 (Vector space of all functions M(a, b)). Let −∞ ≤ a ≤
b ≤ +∞ (a, b can be infinite numbers). Let X = M(a, b) consist of all
functions f : [a, b] → C. Operations + and λ· are defined point-wise:

(f + g)(t) = f(t) + g(t),

(λ · f)(t) = λf(t),

a ≤ t ≤ b, f, g ∈M(a, b).

We can think that f(t) is a t-coordinate of vector f ∈ X, that is we
have ”infinite continuum number” of coordinates in the vector space
M(a, b).

4.2. Normed space. Let X be a vector space. X is said to be a
normed space if for every x ∈ X there is associated a nonnegative real
number ∥x∥, called the norm, in such a way that

(a) ∥x+ y∥ ≤ ∥x∥+ ∥y∥ for all x, y ∈ X,
(b) ∥αx∥ = |α|∥x∥, if x ∈ X and α is a scalar,
(c) ∥x∥ > 0 if x ̸= 0.
If (a) and (b) hold only then we speak about semi-norm.
We can define distance between vectors in normed space: d(x, y) =

∥x−y∥, for x, y ∈ X. Normed space X with a metric d satisfies axioms
of metric space:

(i) 0 ≤ d(x, y) ≤ ∞ for all x, y ∈ X,
(ii) d(x, y) = 0 if and only if x = y,
(iii) d(x, y) = d(y, x) for all x, y ∈ X,
(iv) d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ X.
Having a metric on X we can say about convergence of sequences of

elements of X, fundamental sequences, open and closed subsets etc.

Example 17 (Normed space Cn
p ). Consider complex coordinate space

Cn = {ξ = (z1, z2, . . . , zn)|zi ∈ C, i = 1, . . . , n}.
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Consider classical euclidean norm

∥ξ∥2 =

√√√√ n∑
i=1

|zi|2, ξ ∈ Cn

This norm can be generalizing: define a family of norms depending of
parameter p, 1 ≤ p <∞:

∥ξ∥p = p

√√√√ n∑
i=1

|zi|p, ξ ∈ Cn

We can extend last formula to a case p = ∞:

∥ξ∥∞ = lim
p→∞

p

√√√√ n∑
i=1

|zi|p = max
i=1,...,n

|zi|, ξ ∈ Cn

Vector space Cn together with norm ∥ ·∥p gives to us finite-dimensional
normed space Cn

p , 1 ≤ p ≤ ∞.

Proposition 1. The convergence in space Cn
p does not depend of p.

This means that any sequence {zi}∞i1 is (or is not) convergent simulta-
neously for all 1 ≤ p ≤ ∞.

We can generalized Example 17 to infinite-dimensional case.

Example 18 (Space l∞). Define vector space l∞ ⊂ C∞ as space of
all infinite bounded sequences ξ = {zi}∞i=1. This means that for every
ξ there exits constant C (which depends of ξ) such that |zn| ≤ C for
all n ∈ N. The operations summation and multiplication by a scalar
are defined coordinate-wise (see Example 15). We regard l∞ as normed
space by equipping it with the norm

(14) ∥ξ∥∞ = sup{|zn|, n ∈ N} <∞.

Example 19 (Spaces l∞c and l∞0 ). In the space l∞ consider subspaces
l∞c consisting of convergent sequences ξ and l∞0 consisting of sequences
converging to a zero. Certainly we consider l∞c and l∞0 with the same
norm (14).

Example 20. Fix real number p such that 1 ≤ p < ∞ and consider
vector space lp consisting of all infinite consequences ξ = {zn}∞i=1 which
satisfies to condition:

∞∑
i=1

|zi|p <∞.
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As in Example 15, the operations summation and multiplication by
scalar are defined coordinate-wise. Equip lp with the norm

∥ξ∥p = p

√√√√ ∞∑
i=1

|zi|p.

Normed spaces lp are natural generalizations of spaces Cn
p from Example

17.

Example 21 (Uniform norm). Consider to real numbers −∞ ≤ a ≤
b ≤ +∞ and space C[a, b] ⊂ M(a, b) of all continuous bounded func-
tions f : [a, b] → C. Space of all such functions with point-wise opera-
tions defined in Example 16. Define uniform (or sup-norm) norm on
the space C[a, b]:

∥f∥∞ = sup{|f(t)||t ∈ C[a, b]} <∞
for f ∈ C[a, b]. Remark that case a = −∞ and b = +∞ is also possible
and we denote this space C(R).

Example 22. Consider two subspace of C(R) with the same uniform
norm ∥ · ∥∞: subspace C0(R) of functions f(t) converging if |t| → ∞
and subspace C00(R) of functions f(t) with compact support (this means
that there exists T > 0 such that f(t) = 0 for all |t| > T ).

Example 23 (Space Lp(R)). Let 1 ≤ p < ∞. Consider vector space
Lp0(R) of measurable functions f : R → C such that∫ +∞

−∞
|f(t)|pdµ(t) <∞.

Define

∥f∥p = p

√∫ +∞

−∞
|f(t)|pdµ(t).

Note that ∥ · ∥p is not a norm on the space Lp0(R)! Indeed, we can
consider function

(15) f(t) =

{
0, (t ∈ R\Q)
1, (t ∈ Q).

Set Q has Lebesgue measure zero and therefore ∥f∥p = 0 but f is not
a zero element of Lp0(R). Thus the last axiom of norm is not satisfied
and ∥ · ∥p is a semi-norm on Lp0(R).

To make ∥ · ∥p a norm we say that f and g are equivalent and write

f
a.e.
= g if and only if f = g almost everywhere. Remind that this means

that there exists zero Lebesgue measure set Z ⊂ R (null-set) such that
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for any t ∈ R, t /∈ Z we have f(t) = g(t). Let Lp(R) be the space of all
equivalence classes of element from Lp0(R).

This definition means that an element of Lp(R) can be represented
by some function f : R → C but we can freely replace f by any function
g, f

a.e.
= g without replacing the element of Lp(R). In particular, it is

make no sense to speak about value f(t0) in some particular point t0.
However, one can check that operations +, λ· are defined correctly and
norm ∥f∥p does not depend of choice of representing function f . Now

∥ · ∥p is indeed a norm: if ∥f∥p = 0 then f
a.e.
= 0 and 0 is representing

the same element as f in the space Lp(R).

Example 24 (Space L∞(R)). We have construction which is analogues
to previous example. Let L∞

0 (R) consists of all functions f : R → C
which are measurable and bounded almost everywhere. For f ∈ L∞

0 (R)
we have semi-norm ∥f∥∞ (one can consider the same function as in 15
to see that ∥ · ∥∞ is not a norm) and again consider equivalence classes

f
a.e.
= g as in previous example. The resulting normed space is denoted

by L∞(R).

Example 25 (Comparison of spaces L1(R), L2(R) and L∞(R)). Con-
sider the following functions fi : R → R, i = 0, 1, 2, 3 and gj : R → R,
j = 1, 2:

f0(t) =
1

1 + t2
,

f1(t) =
1√

|t|(1 + t2)
,

f2(t) =
sin t

t
+

1
3
√

|t|(1 + t4)
,

f3(t) =
1√

1 + |t|
,

g1(t) =
1

3
√

|t|(1 + t4)
,

g2(t) =
sin t

t
.

One can easily check that the diagram on the Fig. takes place, so spaces
L1, L2 and L∞ are all different.

4.3. Banach spaces. We say set normed space is Banach space if it
is complete as metric space, that is every fundamental sequence has a
limit.
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Example 26. Any finite-dimensional normed space is Banach. In
particular all spaces Cn

p are Banach.

Proposition 2. (a) Every absolutely convergent series in a Banach
space converges;

(b) If every absolutely convergent series converges in a normed space,
then it is Banach.

LetX, Y are two normed spaces. Map T : X → Y is a linear operator
if the following two properties are satisfied:

(l1) T (u+ v) = T (u) + T (v), u, v ∈ X;
(l2) T (λu) = λT (u) λ ∈ C, u ∈ X.
We say that linear operator T : X → Y is bounded if

(16) ∥T∥ = sup{∥Tx∥|x ∈ X, ∥x∥ ≤ 1} <∞.

Let B(X, Y ) be the vector space of all bounded linear operators T :
X → Y with operations:

(f + g)(u) = f(u) + g(u), u ∈ X, f, g,∈ B(X, Y ),

(λ · f)(u) = λf(u), u ∈ X,λ ∈ C, f ∈ B(X, Y ).

Proposition 3. Formula (16) defines a norm on the space B(X, Y ),
which is called operator norm.

Theorem 11. Let X, Y are normed spaces and Y is Banach. Then
vector space B(X, Y ) equipped with operator norm (16) is Banach.

The one important case is Y = C. The space B(X,C) is denoted X ′

and is called dual space to X. By the previous theorem X ′ is Banach
space.

Proposition 4. Normed spaces lp, l∞, Lp are Banach spaces, 1 ≤ p ≤
∞.

For 1 < p <∞ let 1 < q <∞ be the unique dual number such that

1

p
+

1

q
= 1

Proposition 5. For 1 < p < ∞ the dual space to Lp and lp are Lq

and lq:

(Lp)′ = Lq,

(lp)′ = lq.

Proposition 6. Space l∞ is dual to l1 and vice versa:(
l1
)′
= l∞,

(l∞)′ = l1.
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4.4. Hilbert spaces. We know from previous section that l2, L2 are
Banach spaces. But these spaces posses much more interesting struc-
ture: the structure of Hilbert space.

Scalar product on the vector space X is a map ⟨·, ·⟩ : X × X → R
with the properties:

(a) ⟨αx+ βy, z⟩ = α⟨x, z⟩+ β⟨y, z⟩, x, y, z ∈ X, α, β ∈ C;
(b) ⟨x, αy + βz⟩ = α⟨x, y⟩+ β⟨x, z⟩, x, y, z ∈ X, α, β ∈ C;
(c) ⟨y, x⟩ = ⟨x, y⟩, x, y ∈ X;
(d) ⟨x, x⟩ ≥ 0 and ⟨x, x⟩ = 0 if and only if x = 0, x ∈ X.
Scalar product defines the norm on X:

∥x∥ =
√
⟨x, x⟩, x ∈ X.

We say that space X with scalar product is Hilbert space if it is
Banach space with respect to norm ∥x∥.
Example 27. The norm in l2 is defined from the scalar product

⟨z, w⟩ =
∞∑
i=1

ziwi.

Example 28. The norm in L2 is defined from the scalar product

⟨f, g⟩ =
∫ +∞

−∞
f(t)g(t)dt.

So the spaces l2 and L2 are Hilbert.

Theorem 12 (Riesz theorem). Let X is Hilbert space. Then every
vector x ∈ X defines bounded linear operator fx : X → C by the rule
fx(y) = ⟨y, ⟩x. Vice versa, every bounded linear operator f : X → C
is equal fx for some x ∈ X. Moreover, this bijection x 7→ fx preserves
norms on X and X ′.

This theorem illustrates the relation (L2)′ = L2.

Theorem 13. Let X is Hilbert space. which is in addition is separable
(this means that there exists dense countable subset in X). Then there
exists basis xα ∈ X, α ∈ A for some countable set A with the property;

⟨xα, xβ⟩ =
{

1 (α = β)
0 (α ̸= β)

Moreover, for any x ∈ x we have

x =
∑
α∈A

cαxα

and
cα = ⟨x, xα⟩.
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Basis xα in the theorem is called Hilbert basis (or orthogonal system)
in X.

Examples of Hilbert basis: harmonics eikt, Legendre polynomials,
wavelets, etc.

5. Fourier analysis

5.1. Heat equation and Fourier series. Fourier series arise very
naturally while solving the heat equation:

(17)
∂u

∂t
= a2

∂2u

∂x2
.

Here u = u(t, x) is a temperature in the heat conducting rod of length
L, t is time coordinate and x is the coordinate in the rod, x ∈ [0, L]
and a be some constant related to rod material.

The usual statement of problem is the following: to find solution
u(t, x) of (17) for which 1) the initial temperature is given and is de-
termined by some function u(0, x) = f(x), 0 < x < L; 2) boundary
conditions during heating are controlled by two functions; we consider
particular case when boundary temperature is kept zero: u(t, 0) =
u(t, L) = 0.

One of standard method of solution of this problem is separation of
variables approach. We suppose

u(t, x) = A(x)B(t),

This gives equation:

AB′ = a2A′′B.

It is natural to expect that A is proportional to A′′ and B′ is propor-
tional to B. Thus we have A(x) = sin(αx + β) for some α, β ∈ R.
Condition A(0) = A(L) = 0 implies

A(x) = sin

(
kπx

L

)
for some k ∈ Z. Then

B′ = −a2k
2π2

L2
B

and

B(t) = e−
k2π2a2

L2 t

At last we obtain following sequence of solutions of heat equation with
trivial boundary condition:

Uk(t, x) = sin

(
kπx

L

)
e−

k2π2a2

L2 t,
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k ∈ Z (to get positive solution we need to add condition k ≥ 1).
Therefore the general solution of (17) vanishing at the ends of the

rod can be expressed as series

u(t, x) =
∞∑
k=1

ckUk(t, x)

with some unknown coefficients. Now initial condition f(x) = u(0, x)
gives

f(x) =
∞∑
k=1

ck sin

(
kπx

L

)
The right side of the last equation is exactly the Fourier series of func-
tion f(x). For solving (17) we need to be able to find coefficients ck,
which are called Fourier coefficients of function f . Further we consider
this series in more mathematical details.

5.2. Function space L2(R/2π). The points of space L2(R/2π) are
represented by measurable 2π-periodic functions f : R → C:

f(t+ 2π) = f(t),∀t ∈ R,
for which integral

1

2π

∫ 2π

0

|f(t)|2dt

is finite. In the space L2(R/2π) we identify those functions f and g for
which set

Z0 = {t ∈ R|f(t) ̸= g(t)}
has zero Lebesgue measure. Remark also that f(t) ∈ L2(R/2π) can
be not defined in some zero Lebesgue measure set of values t. Because
of this it is make no sense to speak about value f(t) for for fixed t;
you can freely replace f(t) by any other value without changing f as

element of L2(R/2π); only the integrals
∫ b
a
f(t)dt are correctly and

uniquely defined for all a < b. You can find more rigorous definitions
in previous section.

Now define scalar product ⟨, ⟩ in L2(R/2π):

⟨f, g⟩ = 1

2π

∫ 2π

0

f(t)g(t)dt

(remind that z denotes complex conjugation of complex number z =
x+ iy: z = x− iy). Scalar product defines norm on L2(R/2π):

∥f∥2 =
√
⟨f, f⟩ =

(
1

2π

∫ 2π

0

|f(t)|2dt
) 1

2



MATHEMATICAL ANALYSIS FOR DATA ENGINEERS 31

Theorem 14. Space L2(R/2π) equipped by norm ∥ · ∥2 is a (complex)
Hilbert space.

5.3. Pure harmonics. Consider following family of 2π-periodic func-
tions ek(t) for k ∈ Z:

ek(t) = eikt = cos(kt) + i sin(kt).

Lemma 5. Functions ek(t) form orthogonal system in L2(R/2π), that
is:

⟨ek, el⟩ =
1

2π

∫ 2π

0

ei(k−l)tdt =

{
1, if k = l,
0, if k ̸= .l

Remark that factor 1
2π

in definition of scalar product is chosen to
satisfy condition ⟨ek, ek⟩ = 1.

Functions ek, k ∈ Z are called pure harmonics.

5.4. Fourier coefficients. If function f ∈ L2(R/2π) satisfies

f(x) =
k=∞∑
k=−∞

ckek

(convergence in the norm ∥ · ∥2; we understand now this equality just
formally, not thinking if convergity take place or not) then the right side
is called Fourier series of f and coefficients ck are Fourier coefficients
of f .

To find Fourier coefficients we consider scalar product of left and
right sides with harmonic ek and use orthogonality:

⟨f, ek⟩ = ck.

Therefore we obtain the following formula which we will consider as
definition of Fourier coefficients of function f ∈ L2(R/2π):

ck =
1

2π

∫ 2π

0

f(t)e−iktdt.

Lemma 6 (Riemann–Lebesgue lemma).

lim
k→±∞

ck = 0.

This lemma shows that ”high frequency harmonics” becomes more
and more insignificant and most of information about function is con-
taining in finite part of harmonics.

To formulate the next very important result, let denote k-th Fourier
coefficient of function f as f̂(k):

f̂(k) = ck =
1

2π

∫ 2π

0

f(t)e−iktdt
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(the real meaning of this notation we will understand later, when will
study Fourier transform).

Lemma 7 (Parseval’s formula). The following equality is valid for ev-
ery f, g ∈ L2(R/2π):

⟨f, g⟩ =
k=+∞∑
k=−∞

f̂(k)ĝ(k).

In particular,

∥f∥22 =
k=+∞∑
k=−∞

|f̂(t)|2 =
k=+∞∑
k=−∞

|ck|2.

Parseval’s lemma shows that we can interpret Fourier coefficients as
elements of Hilbert space l2(R) and norm in L2(R/2π) corresponds to
standard Hilbert norm in l2(R). In some sense all information about f
is contained in Fourier coefficients (we will see that it is not really true
if we we wish to discretize f !).

5.5. Example: The Unknown Strength Problem. Consider some
distant rod sending signal which is characterized by amplitude and
frequency. The examples of such signal could be: light or radio wave
from sun; reflected sunlight from the moon; radio waves in radar, etc.

We assume that rod has coordinate x ∈ [−L,L], 2L is a length of
the rod. Signal sent by point x is

f(x)eiωt.

Here f(x) is strength of signal (it depends of point on the rod); ω is
frequency, t is a time.

Now consider a situation when rod is very distant, that is we receive
signal in some point P which is on the distance D from the center of
the rod. Making far-field assumption we can approximate the distance
from P to point x by

D − x cos θ,

where θ ∈ [0, π] is an angle between the rod axe and vector passing
from P to center of rod.
The signal receiving by P at time t was sent from point x at time

t− 1
c
(D−x cos θ), where c is a speed of propagation of the signal. This

follows that signal received in point P from point x at time t is equal
to

f(x)eiω(t−
1
c
(D−x cos θ)) = eiω(t−

D
c
)f(x)ei

ω cos θ
c

x
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Point P receives signals from all points x ∈ [−L,L] and resulting signal
received by P at time t is

eiω(t−
D
c
)

∫ L

−L
f(x)ei

ω cos θ
c

xdx

Therefore the quantity which we can measure in P is∫ L

−L
f(x)ei

ω cos θ
c

xdx

Now if we could able to choose θ such that

ω cos θ

c
= −kπ

L

then the result of our measurement is Fourier coefficient f̂(k) of func-
tion f .

Remark that the last equation has solution only if

|k| ≤ Lω

πc
.

So we can measure only finite number of Fourier coefficients of f .
In signal processing the wavelength is defined as

λ =
2πc

ω
.

Therefore one can measure 2N + 1 Fourier coefficients, where N is
maximal integer number such that N ≤ 2L

λ
.

There is the way to increase N : to use higher frequency ω. Larger
frequency can decrease wavelength λ and increase quotient 2L/λ.
Technically, resolution of radar is proportional to wavelength λ, so

to get more detailed information about f(x) we need higher frequency
ω. This problem of shortest possible wavelength was extremely im-
portant during WW2: ”the side with the shortest wavelength would
win the war” (Körner notes). Usual radar has wavelength counting by
meters. The invention of cavity magnetron by British scientists during
the WW2 made possible microwave radar having a wavelength 10cm,
which could mounted on planes.

5.6. Convergence of Fourier series. Now let discuss in what sense
we have

f(t) =
∞∑

k=−∞

ckek(t) =
∞∑

k=−∞

cke
ikt.



34 YAROSLAV BAZAIKIN

Consider partial sums:

sN(t) =
N∑

k=−N

cke
ikt

Remark that if we consider finite-dimensional subspace L2
N ⊂ L2(R/2π)

generated by vectors e−N , . . . , e0 = 1, . . . , eN , then sN is exactly the
orthogonal projection of f to L2

N .
Then we have at N → ∞ (using orthogonality of harmonics and

Pythagoras’ theorem)

∥f − sN∥2 = ∥f∥2 − ∥sN∥2 = ∥f∥2 −
k=N∑
k=−N

|ck|2 → 0

(the last limit follows from Parseval’s formula). We obtain:

Theorem 15. The Fourier series of function f converges to f in the
sense of metric ∥ · ∥2 on the space L2(R/2π).

The following theorem is much more hard to prove.

Theorem 16 (Carleson’s theorem). The partial sums sN(t) of function
f ∈ L2 converges to f(t) for almost t.

The following two theorems allow to us to estimate the convergence
rate of Fourier series using an information about smoothness of f .

Theorem 17. Let r-derivative f (r) of function f exists, is continuous
and the following integral is finite:

V (f) =

∫ 2π

0

|f ′(t)|2dt <∞,

then

|ck| ≤
V (f)

2π|k|r+1
,∀k ̸= 0.

Theorem 18. If Fourier coefficients satisfy

ck = O

(
1

2π|k|r+1+ε

)
for some ε > 0 then function f(t) =

∑∞
k=−∞ cke

ikt is at least r times
continuously differentiable.

It is very important observation: differentiability of function f is
related to asymptotic behaviour of its Fourier coefficients.
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5.7. Case of arbitrary segment [0, L]. If we consider arbitrary seg-
ment [0, L] then one can obtain analogous formulas for Fourier series.
We state the most important of them in the next theorem.

Theorem 19. Let f : R → C is a periodic function with period L > 0.

Suppose
∫ L
0
|f(t)|2dt <∞. Then Fourier coefficients and Fourier series

is given by

ck =
1

L

∫ L

0

f(t)e−
2kπi
L

xdt, f(t) =
k=∞∑
k=−∞

cke
2kπi
L

tdt,

and Prseval’s formula is

k=∞∑
k=−∞

|ck|2 =
1

L

∫ L

0

|f(t)|2dt.

6. Fourier transform

6.1. Fourier transform in L1 = L1(R). In this section we will work
with functions defined on whole real line:

f : R → C.
We will think of these functions as time signals.

Remind that space L1 = L1(R) consists of the measurable functions
f for which the integral

∥f∥1 =
∫ ∞

−∞
|f(t)|dt

is finite (certainly, we need to identify all functions which differ on the
zero measure set only). Details are in section ?.

The Fourier transform of function f ∈ L1 is defined by integral

(18) f̂(ξ) =
1√
2π

∫ ∞

−∞
f(t)e−iξtdt, ξ ∈ R.

We can interpret f̂ in the following way: for fixed ξ value f̂(ξ) is the
(complex) amplitude with which the ”pure harmonics” eξ is represented
in f . In case ξ being integer we actually obtain amplitude of pure
harmonic, as in previous lectures. But we also obtain some amplitudes
for harmonics with fractional and even irrational frequencies.

Theorem 20 (A version of Riemann–Lebesgue lemma for Fourier

transform). The Fourier transform f̂ of a function f ∈ L1 is con-
tinuous and

lim
ξ→±∞

f̂(ξ) = 0.
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6.2. Translation, dilation and convolution. For any time signal
f : R → C define its translation by h to the right Thf :

Thf(t) = f(t− h), t ∈ R.

Theorem 21.

T̂hf(ξ) = e−iξhf̂(ξ).

Proof. Indeed,

T̂hf(ξ) =
1√
2π

∫ +∞

−∞
Thf(t)e

−iξtdt =

1√
2π

∫ +∞

−∞
f(t− h)e−iξ(t−h)e−iξhdt =

e−iξh
1√
2π

∫ +∞

−∞
f(t− h)e−iξ(t−h)d(t− h) = e−iξhf̂(ξ).

□

Theorem 22.

(̂eiωtf)(ξ) = f̂(t− ω) = Tωf̂(ξ).

Proof.

(̂eiωtf)(ξ) =
1√
2π

∫ +∞

−∞
eiωtf(t)e−iξtdt =

1√
2π

∫ +∞

−∞
f(t)e−i(ξ−ω)tdt = f̂(ξ − ω).

□
Now define dilation along time axe by factor a ̸= 0:

Daf(t) = f

(
t

a

)
, t ∈ R.

Theorem 23.

D̂af(ξ) = |a|D 1
a
f̂(ξ).

Proof. Indeed, we have:

D̂af(ξ) =
1√
2π

∫ +∞

−∞
Daf(t)e

−iξtdt =
1√
2π

∫ +∞

−∞
f

(
t

a

)
e−iξtdt.

Consider the change of variable t = au:

D̂af(ξ) =
|a|√
2π

∫ +∞

−∞
f(u)e−iaξudu = |a|f̂(aξ) = |a|D 1

a
f̂(ξ).

□
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Let f, g ∈ L1. Define convolution f ∗ g:

(f ∗ g)(t) =
∫ +∞

−∞
f(t− x)g(x)dx, t ∈ R.

To understand what convolution means take gε be the function, sup-
ported in some interval (−ε, ε), ε > 0 with the property

∫ ε

−ε
gε(t)dt = 1.

Then convolution f = f ∗ gε is ”smoothed” version of f , where ev-
ery value f(t) is replaced by the weighted mean of function f in the
”window” (t− ε, t+ ε) with weight g.

Theorem 24.

(̂f ∗ g)(ξ) =
√
2πf̂(ξ)ĝ(ξ).

Proof.

(̂f ∗ g)(ξ) = 1√
2π

∫ +∞

−∞
f ∗ g(t)e−iξtdt =

1√
2π

∫ +∞

−∞

(∫ +∞

−∞
f(t− x)g(x)dx

)
e−iξtdt =∫ +∞

−∞

(
1√
2π

∫ +∞

−∞
f(t− x)e−iξ(t−x)d(t− x)

)
g(x)e−iξxdx =

√
2πf̂(ξ)

1√
2π

∫ +∞

−∞
g(x)e−iξxdx =

√
2πf̂(ξ)ĝ(ξ).

□

Example 29 (Fourier transform of density of normal distribution).
Consider density function of normal distribution with zero mean and
unit standard deviation:

N0,1(t) =
1√
2π
e−

t2

2 , t ∈ R.
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Let h(ξ) = N̂0,1(ξ), ξ ∈ R. Then

dh

dξ
=

1√
2π

d

dξ

∫ +∞

−∞
N0,1(t)e

−iξtdt =

−i
2π

∫ +∞

−∞
e−

t2

2 te−iξtdt =
i

2π

∫ +∞

−∞
e−iξtd(e−

t2

2 ) =

i

2π
e−

t2

2 e−iξt
∣∣∣∣+∞

−∞
− i

2π

∫ +∞

−∞
e−

t2

2 d(e−iξt) =

− ξ

2π

∫ +∞

−∞
e−

t2

2 e−iξtdt = − ξ√
2π

∫ +∞

−∞
N0,1(t)e

−iξtdt = −ξh(ξ).

Thus function h(ξ) satisfies to differential equation

(19)
dh

dξ
= −ξh

Equation (19) has general solution

h(ξ) = Ce−
ξ2

2

for some constant C. We have

C = h(0) =
1√
2π

∫ +∞

−∞
N0,1(t)dt =

1√
2π

by property of probability density function and therefore C = 1 and we
obtain:

N̂0,1(ξ) =
1√
2π
e−

ξ2

2 ,

that is Fourier transform of normal distribution density is identical
copy of itself:

N̂0,1 = N0,1.

Example 30 (Fourier transform of indicator function). For a > 0
consider indicator function

1[−a,a](t) =

{
1, −a ≤ t ≤ a
0, otherwise.

Then for ξ ̸= 0 we have

1̂[−a,a](ξ) =
1√
2π

∫ a

−a
e−iξtdt =

i

ξ
√
2π

∫ a

−a
de−iξt =

i√
2π

e−iξa − eiξa

ξ
=

√
2

π

sin(aξ)

ξ
.
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Formally we can not use last formula for xi = 0. But Theorem 20 state
that Fourier transform is always continuous therefore

1̂[−a,a](0) = lim
ξ→0

1̂[−a,a](ξ) =

√
2

π
lim
ξ→0

sin(aξ)

ξ
= a

√
2

π
.

Define sinc function:

sinc(t) =

{
sin(t)/t, t ̸= 0,

1, t = 0.

Then we can conclude that

1̂[−a,a](ξ) = a

√
2

π
sinc(aξ).

Example 31 (Fourier transform of exponential tail). For a > 0 let

f(t) = e−a|t|, t ∈ R.
Then

f̂(ξ) =
1√
2π

∫ +∞

−∞
e−a|t|e−iξtdt =

1√
2π

∫ +∞

0

e−(a+iξ)tdt+
1√
2π

∫ 0

−∞
e(a−iξ)tdt =

1√
2π

(
− 1

a+ iξ
e−(a+iξ)t

∣∣∣∣+∞

0

+
1

a− iξ
e(a−iξ)t

∣∣∣∣0
−∞

)
=

1√
2π

(
1

a+ iξ
+

1

a− iξ

)
=

1√
2π

2a

a2 + ξ2
.

Therefore

(̂e−a|t|)(ξ) =
1√
2π

2a

a2 + ξ2
.

6.3. Fourier transform in L2 = L2(R). Remind that norm in L2 =
L2(R) comes from scalar product:

⟨f, g⟩ =
∫ ∞

−∞
f(t)g(t)dt,

and L2 consists of those signals for which L2-norm

∥f∥2 =
(∫ ∞

−∞
|f(t)|2dt

) 1
2

is finite (we again identify ”equivalent functions”, details in Section ?).

Theorem 25 (Schwarz’s inequality). For any f, g ∈ L2

⟨f, g⟩ ≤ ∥f∥2∥g∥2.
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Trying formally define Fourier transform for f ∈ L2 we find it diffi-
cult: function e−iξt is not an element of L2. Corresponding integral can
be infinite. Using the fact that L1 ∩ L2 is dense in L2 we can expand
formula (18) from L1 ∩ L2 to L2 and obtain one-to-one map

F : L2 → L2

which is called Fourier transform on L2. Here we formulate main prop-
erties of this transform.

Theorem 26 (Parceval-Plancherel’s).

⟨f, g⟩ = ⟨f̂ , ĝ⟩,

in particular,

∥f∥2 = ∥ĝ∥2.
Both formulas can be written in integral form:∫ ∞

−∞
f(t)g(t)dt =

∫ ∞

−∞
f̂(t)ĝ(t)dt,∫ ∞

−∞
|f(t)|2dt =

∫ ∞

−∞
∥f̂(t)∥2dt.

The following inversion formula shows that signal f can be restored
from all pure oscillations of all possible frequencies ξ ∈ R.

Theorem 27 (Inversion formula). If f and f̂ are both in L1 then

f(t) =

∫ ∞

−∞
f̂(ξ)eiξtdξ

almost everywhere (and especially this equality holds in those points t
in which f is continuous).

We can conclude from the last theorem that

f(t) =
̂̂
f(−t).(20)

Example 32. In Example 31 we showed that

(̂e−a|t|)(ξ) =
1√
2π

2a

a2 + ξ2
.

Combining this with (20) we have

̂( 2a

a2 + t2

)
(ξ) =

√
2πe−a|ξ|, ξ ∈ R, a > 0.
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6.4. Fourier transform, differentiating and Schwarz’s space.
Let f be C1-function and f, f ′ ∈ L1. Remark that this implies

lim
t→±∞

f(t) = 0.

Then

1√
2π

∫ +∞

−∞
f ′(t)e−iξtdt =

1√
2π
f(t)e−iξt

∣∣∣∣+∞

−∞
+

iξ√
2π

∫ +∞

−∞
f(t)e−iξtdt =

iξ√
2π

∫ +∞

−∞
f(t)e−iξtdt

Therefore

f̂ ′(ξ) = iξf̂(ξ), ξ ∈ R.
We can continue differentiating assuming f ∈ Cr and obtain:

Theorem 28. If f is Cr-function and f (k) ∈ L1 for 0 ≤ k ≤ r then

f̂ (r)(ξ) = (iξ)rf̂(ξ), ξ ∈ R, r ≥ 0.

In particular (using Theorem 20) we have

lim
t→±∞

|ξ|rf̂(ξ) = 0.

What one can say about differentiating of Fourier transform itself?
We have

(f̂)′(ξ) =
1√
2π

d

dξ

∫ +∞

−∞
f(t)e−iξtdt =

1√
2π

∫ +∞

−∞
(−it)f(t)e−iξtdt =

−i√
2π

∫ +∞

−∞
tf(t)e−iξtdt = −i(̂tf)(ξ)

So we proved

(̂tf)(ξ) = i(f̂)′(ξ), ξ ∈ R.
Repeating this by induction we obtain:

Theorem 29. Let f ∈ L1 and∫ +∞

−∞
|t|r|f(t)|dt <∞.

Then

(̂trf)(ξ) = ir(f̂)(r)(ξ), ξ ∈ R.

Theorem 27 seems to be very hard for use. To formula for restoring
signal f by oscillations f̂ we need already to know some good properties
f̂ which is not yet has been restored!
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We can avoid this difficulty if consider subspace of much more ”good”
signals. The idea here is following: the smoother the signal f(t) for

|t| → ∞, the the faster decay of ˆf(ξ) for |ξ| → ∞. Inverse statement is
also true: the faster decay of signal, the smoother oscillations (compare
these principles to Theorems 17 and 18). So we come to idea to consider
space of signals with very fast decay of the time signal f(t) for |t| → ∞
— Schwarz’s space.

By definition Schwarz’s space S consists of those functions f which
have derivatives of all orders and for |t| → ∞ all derivatives decay
faster to zero than any power 1

|t|n , n ∈ N:

sup
t∈R

|t|n|f (r)(t)| <∞ for any n,m ∈ N.

We have the following result.

Theorem 30. If f ∈ S then f̂ ∈ S and corresponding map

F : S → S
is a bijection.

In other words Fourier transform is a one-to-one transformation of
Schwarz’s space.

Theorem 31. Let f, g ∈ L1 are C1-functions. Then

(f ∗ g)′ = f ′ ∗ g = f ∗ g′.

Proof. We have

(f ∗ g)′(t) = d

dt

∫ +∞

−∞
f(t− x)g(x)dx =∫ +∞

−∞
f ′(t− x)g(x)dx = (f ′ ∗ g)(t) =

−f(t− x)g(x)

∣∣∣∣x=+∞

x=−∞
+

∫ +∞

−∞
f(t− x)g′(x)dx = (f ∗ g′)(t).

□

6.5. Application Fourier transform for solution of some differ-
ential equations.

Example 33. Let’s solve a problem

−u′′ + u = f(t), lim
t→±∞

u(t) = 0.

Applying Fourier transform to both sides of equation we have

ξ2û+ û = f̂ .
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Equation becomes purely algebraic and we obtain

û(ξ) =
f̂(ξ)

1 + ξ2
= f̂(ξ)

1

1 + ξ2
=

√
2π

2
f̂(ξ)ê−|t|(ξ) =

1

2
̂(e−|t| ∗ f)(ξ).

Then

u(t) =
1

2
(e−|t| ∗ f)(t) = 1

2

∫ +∞

−∞
e−|t−x|f(x)dx.

Example 34 (Laplace equation). Consider following problem for Lap-
lace equation:

∆u = uxx + uyy = 0, x ∈ R, y > 0, u(x, 0) = f(x), lim
y→+∞

u(x, y) = 0.

Consider Fourier transform in variable x:

(21) û(ξ, y) =
1√
2π

∫ +∞

−∞
u(x, y)e−iξxdx.

Applying Fourier transform to equation we obtain

−ξ2û+ ûyy = 0, û(ξ, 0) = f̂(ξ), lim
y→+∞

û(ξ, y) = 0.

This differential equation has the following general solution:

û(ξ, y) = A(ξ)e−|ξ|y +B(ξ)e|ξ|y

for some functions A(ξ), B(ξ). Asymptotic condition for u(x, y) implies
B = 0 and boundary condition gives

û(ξ, y) = f̂(ξ)e−|ξ|y =
1√
2π
f̂(ξ)

̂(
2y

y2 + ξ2

)
(we used Example 32 here). Then

u(x, y) =
1

2π

(
2y

y2 + ξ2

)
∗ f =

1

π

∫ +∞

−∞

yf(z)dz

y2 + (x− z)2
.

Example 35 (Transport equation). Let’s solve the following problem
for transport equation:

ut + cux = 0, x ∈ R, t > 0, u(x, 0) = f(x).

Consider the same Fourier transform as in 21 (replacing y by t). Then

ût + icξû = 0, û(ξ, 0) = f̂(ξ).

General solution of this equation gives

û(ξ, t) = A(ξ)e−icξt

for some function A(ξ). Boundary condition gives

û(ξ, t) = f̂(ξ)e−icξt.
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We see that right side of the last equation looks like translation formula
(Theorem 21). Then

û(ξ, t) = T̂ctf(ξ).

Therefore

u(x, t) = Tctf(x) = f(x− ct).

Example 36 (Wave equation). Consider the following problem for
wave equation:

utt = c2uxx, x ∈ R, t > 0, u(x, 0) = f(x), ut(x, 0) = g(x).

Considering Fourier transform 21 (replacing y by t) we obtain:

ûtt + c2ξ2û = 0, û(ξ, 0) = f̂(ξ), ût(ξ, 0) = ĝ(ξ).

Then

û(ξ, t) = A(ξ) cos(cξt) +B(ξ) sin(cξt)

for some functions A(ξ), B(ξ). Applying initial conditions we have

û(ξ, t) = f̂(ξ) cos(cξt) +
ĝ(ξ)

ξ
sin(cξt) =

1

2
f̂(ξ)

(
eicξt + e−icξt

)
+
ĝ(ξ)

2iξ

(
eicξt − e−icξt

)
=

To compute the first part of the last formula we use Theorem 21:

1

2
f̂(ξ)

(
eicξt + e−icξt

)
=

1

2
T̂−ctf(ξ) +

1

2
T̂ctf(ξ).

To compute second part we rewrite formula from Theorem 28:

ĥ(ξ)

iξ
=

∫ ξ

−∞
ĥ(η)dη

for any function h ∈ L2. Then

ĝ(ξ)

2iξ

(
eicξt − e−icξt

)
=
T̂−ctg(ξ)

2iξ
− T̂ctg(ξ)

2iξ
=

1

2

∫ ξ

−∞

(
T̂−ctg(η)− T̂ctg(η)

)
dη
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Thus

u(x, t) =
1

2
(f(x+ ct) + f(x− ct))+

1

2

∫ ξ

−∞
(g(η + ct)− g(η − ct)) dη =

1

2
(f(x+ ct) + f(x− ct)) +

1

2

∫ ξ+ct

−∞
g(η)dη − 1

2

∫ ξ−ct

−∞
g(η)dη =

1

2
(f(x+ ct) + f(x− ct)) +

1

2

∫ ξ+ct

ξ−ct
g(η)dη.

6.6. The Heisenberg uncertainty principle.

Theorem 32 (The Heisenberg uncertainty principle). Let f ∈ L2.
Then

∥tf∥2 · ∥ξf̂∥2 ≥ ∥f∥22.

I other words, a time signal f and its Fourier transform f̂ cannot be
simultaneously localized in a small domains of t- and ξ-axes.

This principle manifests itself in many situations. We give several
examples:

1. Trying localize f we can horizontally compress graph f , that is
replace f with Daf for small enough a > 0. Theorem 23 shows that
graph of f̂ then is stretched in horizontal directions with a factor 1

a
and

additionally is flattened by vertical scaling.
2. If we cutoff signal f(t) for |t| > A > 0 then its Fourier transform

f̂ is non-zero for whole R, and moreover, f̂ is not absolutely integrable
for |ξ| → ∞.

3. A bandlimited signal is a signal f(t) with compactly supported
Fourier transform, that is f(ξ) = 0 for |ξ| > Ω for some Ω > 0. Then
signal f can not have compact support.

7. Wavelet transform

7.1. Mother wavelet. A mother wavelet (or simply wavelet) is a func-
tion ψ : R → C satisfying the conditions:

ψ ∈ L2, ∥ψ∥2 = 1,

Cψ =

∫
R,ξ ̸=0

∥ψ̂(ξ)∥2

|ξ|
dξ <∞.

(22)

Speaking non-formally mother wavelet gives the template for ”key pat-
terns” of our signal. All such key patterns are dilated and translated
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copies of mother wavelet. Of course in case Fourier transform we have
sinusoid as mother wavelet.

When the second condition of (22) holds? We have the following
useful lemma.

Lemma 8. If ψ ∈ L2, tψ ∈ L1, then the second condition of (22) is
equivalent to any of the next two conditions:∫ +∞

−∞
ψ(t)dt = 0,

ψ̂(0) = 0.

We see that the mean of mother wavelet on R is equal to zero.

7.2. Wavelet transform. Fix mother wavelet ψ. Let f ∈ L2 be a
time signal. The function

Wf(a, b) =
1√
|a|

∫ +∞

−∞
f(t)ψ

(
t− b

a

)
dt

is called the wavelet transformation of f , a ̸= 0. Remark that often
wavelet transform is considered only for a > 0.

Note that for one-dimensional time signal f the wavelet transform is
a functionWf of two variables a and b (in contrast to Fourier transform
which depends of one variable ξ).

Define

ψa,b(t) =
1√
|a|
ψ

(
t− b

a

)
Then ψa,b is a ”key pattern” we told about. Remark that

∥ψa,b∥2 =
∫ +∞

−∞
|ψa,b(t)|2dt =

1

|a|

∫ +∞

−∞

∣∣∣∣ψ(t− b

a

) ∣∣∣∣2dt =
1

|a|

∫ +∞

−∞

∣∣∣∣ψ (ua)
∣∣∣∣2du =

∫ +∞

−∞
|ψ (v) |2dv = 1.

and

Wf(a, b) = ⟨f, ψa,b⟩.
Let try to compute Fourier transform of wavelet ψa,b. By translation

and dilation rules we have:

ψ̂a,b(ξ) =
1√
|a|
D̂aTbψ(ξ) =

√
|a|D 1

a
T̂bψ(ξ) =√

|a|e−iξbD 1
a
ψ̂(ξ) =

√
|a|e−iξbψ(aξ).
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Then (using Parxebal’s formula)

Wf(a, b) = ⟨f, ψa,b⟩ = ⟨f̂ , ψ̂a,b⟩ =√
|a|
∫ +∞

−∞
f̂(ξ)eiξbψ̂(aξ)dξ = F̂a(b),

where

Fa(ξ) =
√

|a|
√
2πf̂(ξ)ψ̂(aξ)

So we prove

Theorem 33. For fixed a ̸= 0 the function

Wf(a, ·) : b 7→ Wf(a, b)

is the Fourier transform of the function Fa defined in (7.2). In partic-
ular, Wf is continuous on vertical lines a = const and

lim
b→±∞

Wf(a, b) = 0.

Example 37 (Haar wavelet). The Haar wavelet is the following mother
wavelet:

ψHaar(t) =

 1 (0 ≤ t ≤ 1
2
)

−1 (1
2
≤ t ≤ 1)

0 (otherwise)

Denoting ψ = ψHaar and assuming a > 0 for simplicity we have√
|a|ψa,b(t) = ψ

(
t− b

a

)
=

 1 (b ≤ t ≤ b+ a
2
)

−1 (b+ a
2
≤ t ≤ b+ a)

0 (otherwise)

Then

Wf(a, b) =
1√
|a|

(∫ b+a
2

b

f(t)dt−
∫ b+a

b+a
2

f(t)dt

)
=

√
|a|

(
2

a

∫ b+a
2

b

f(t)dt− 2

a

∫ b+a

b+a
2

f(t)dt

)
We see from the last expression that Wf(a, b) (up to factor

√
|a|) is

the difference of two integral means of function f : first integral mean
is taken on the left half of interval (b, b+ a); the second is taken on the
right half.

Example 38 (Mexican hat). Consider mother wavelet

ψ(t) =
2√
3
π− 1

4 (1− t2)e−
t2

2

(factor is taken in such a way that ∥ψ∥2 = 1).
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It easy to check that ψ(t) = −cN ′′
0,1(t) for appropriate constant c > 0.

Then

ψ̂(ξ) = −c(iξ)2N̂0,1(ξ) = cξ2N0,1(ξ).

Then ψ̂(0) = 0 and by Lemma 8 the ψ is indeed a wavelet. This wavelet
is called Mexican hat because of geometric shape of graph.

7.3. Plancherel theorem. In order to formulate analogue of Plan-
cherel formula for wavelets we need to have scalar product of functions
depending of parameters a, b. To do it we need a measure on the plane
H = {(a, b)|a ̸= 0}. This measure should be invariant with respect to
all translations and dilations. To find this measure let remember that
every element (a, b) ∈ H acts on t as:

(a, b) : t 7→ at+ b.

So we can identify H with the group of all affine transformations of
R. Let understand what is a composition of two affine transformations
(a, b) ∈ H and (c, d) ∈ H? We have

t 7→ at+ b 7→ c(at+ b) + d = (ac)t+ (bc+ d).

We see that composition of (a, b) and (c, d) is pair (ac, bc+d) ∈ H. We
denote this composition as (a, b) · (c, d) = (ac, bc+ d).

We assume that measure on H has the form h(a, b)dadb for some
integrable function h on H. Then if U ⊂ H is measurable then we can
find the measure of U by formula:

|U | =
∫
U

h(a, b)dadb.

We say that h(a, b)dadb is the Haar measure if for every U ⊂ H and
for every (c, d) ∈ H the measure |U | is invariant with respect to all
compositions by element (c, d):

|U | = |U · (c, d)|

Theorem 34. Every Haar measure is proportional to the measure

dµ0 =
dadb

a2
.

We will use measure dµ0 as natural measure on H.
Proof. First of all let check that dµ0 is the Haar measure. Indeed,

for avery U ⊂ H and (c, d) ∈ H we have:

|U · (c, d)| =
∫
U ·(c,d)

dadb

a2
.
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Consider change of variables: (a1, b1) = (a, b) · (c, d) = (ac, bc + d).
Then da1 = cda, db1 = cdb and da1db1 = c2dadb and we obtain:

|U · (c, d)| =
∫
U

da1db1
c2a2

=

∫
U

da1db1
a21

= |U |.

Now let show that any other Haar measure is proportional to dµ0. Take
U ⊂ H and consider some Haar measure dµ1. Then there exists some
function h(a, b) on H such that dµ1 = h(a, b)dµ0 and we have∫

U

h(a, b)dµ0 =

∫
U

dµ1 =

∫
U ·(c,d)

dµ1 =

∫
U ·(c,d)

h(ac, bc+ d)dµ0.

Thus h(a, b) = h(ac, bc+d) for all (c, d) ∈ H. Then for any (a1, b1) ∈ H
we take c = a1/a, d = b1 − b ∗ c and have

h(a1, b1) = h(ac, bc+ d) = h(a, b).

Therefore h is a constant and dµ1 is proportional to dµ0. □
Now we can define scalar product of two functions u = u(a, b) and

v = v(a, b) by the following formula:

⟨u, v⟩H =

∫
H

u(a, b)u(a, b)
dadb

a2
.

This gives a structure of Hilbert space on the space L2(H, dµ0).

Theorem 35. Let ψ is arbitrary mother wavelet and W is wavelet
transform. Then

⟨Wf,Wg⟩H = Cψ⟨f, g⟩,
where

Cψ =

∫
R,ξ ̸=0

∥ψ̂(ξ)∥2

|ξ|
dξ

Theorem 36 (Inversion formula).

f(x) =
1

Cψ

∫
H

Wf(a, b)ψa,b(x)
dadb

a2
.

Theorem 37 (Decay of the wavelet transform). Fix wavelet ψ, such
that tψ ∈ L1. Let f be a time signal and f ∈ L2 is bounded globally
and is Hölder continuous in some point b (that is there is α ∈ [0, 1]
such that in a neighbourhood of b an estimate of the form

|f(t)− f(b)| ≤ C|t− b|α

holds). Then

|Wf(a, b)| ≤ C ′|a|α+
1
2 .
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Theorem 38. Fix wavelet ψ with a compact support (this menas that
set {t|ψ(t) ̸= 0} is bounded). Let f ∈ L2 be a time signal whose wavelet
transform satisfies an estimate of the form

|Wf(a, b)| ≤ C|α|α+
1
2

for some α ∈ [0, 1]. Then f is globally Hölder continuous with exponent
α.

7.4. Sampling of wavelet transform. One of the key features of
wavelet transform is a good adaptation to logarithmic scale. Let choose
zoom step σ > 1 (usually σ = 2). Consider grid

ar = σr, r ∈ Z.
Choose now base step β > 0 on axis b. The step on the b-grid depends
on a(!):

br,k = kσrβ, k ∈ Z.
So the goal of fast wavelet transform (FWT) is to compute coefficients

cr,k = Wf(ar, br,k)

and conversely, to reconstruct signal f by its coefficients cr,k.
Most used ”key pattern”:

(23) ψr,k(t) =
1

2
r
2

ψ

(
t− 2rk

2r

)
.

7.5. Example: the Haar wavelet. The Haar wavelet is the following
mother wavelet:

ψ(t) =

 1 (0 ≤ t ≤ 1
2
)

−1 (1
2
≤ t ≤ 1)

0 (otherwise)

It is evident that:∫ +∞

−∞
ψ(t)dt = 0,

∫ +∞

−∞
|ψ(t)|2dt = 1.

Formula (23) shows that wavelet ψr,k is non-zero on the segment

Ir,k = [2rk, 2r(k + 1)).

The length of Ir,k is equal to 2r; wavelet ψr,k is positive and equal to
2−r/2 on the left half of Ir,k; and is negative and equal to −2−r/2 on
the right half of Ir,k. The larger r, the longer interval, the wider ”key
pattern”.

Theorem 39. Functions ψr,k, k, r ∈ Z constitutes an orthogonal basis
in the spece L2(R).


