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Module-valued functors preserving the covering dimension

Jan Spěvák

Abstract. We prove a general theorem about preservation of the covering dimen-
sion dim by certain covariant functors that implies, among others, the following
concrete results.

(i) If G is a pathwise connected separable metric NSS abelian group and X, Y are Ty-
chonoff spaces such that the group-valued function spaces Cp(X, G) and Cp(Y, G) are
topologically isomorphic as topological groups, then dim X = dimY .

(ii) If free precompact abelian groups of Tychonoff spaces X and Y are topologically
isomorphic, then dim X = dim Y .

(iii) If R is a topological ring with a countable network and the free topological R-modules
of Tychonoff spaces X and Y are topologically isomorphic, then dim X = dimY .

The classical result of Pestov [The coincidence of the dimensions dim of l-

equivalent spaces, Soviet Math. Dokl. 26 (1982), no. 2, 380–383] about preser-
vation of the covering dimension by l-equivalence immediately follows from item
(i) by taking the topological group of real numbers as G.

Keywords: covering dimension; topological group; function space; topology of
pointwise convergence; free topological module; l-equivalence; G-equivalence

Classification: 54H11, 54H13

All topological spaces in this paper are assumed to be Tychonoff . Throughout
this paper, by dimension we mean Čech-Lebesgue (covering) dimension dim. By
N we denote the set of all natural numbers, Z stands for the discrete additive
group of integers and R is the additive group (ring, field) of reals with its usual
topology.

1. Introduction

Let X and Y be topological spaces. We denote by C(X,Y ) the set of all
continuous functions from X to Y . If G is a topological group, then Cp(X,G)
denotes the (topological) subgroup C(X,G) of the topological group GX taken
with the subspace topology.

Following [12], we say that spaces X and Y are G-equivalent provided that the
topological groups Cp(X,G) and Cp(Y,G) are topologically isomorphic.

Let us recall the classical notion of Arhangel’skĭı. Spaces X and Y are said
to be l-equivalent if the topological vector spaces Cp(X,R) and Cp(Y,R) (with
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the standard scalar multiplication by real numbers) are topologically isomorphic.
Tkachuk noticed in [14] that l-equivalence coincides with R-equivalence.

Based on this observation, the following notion was introduced in [12]. A topo-
logical property T is said to be preserved by G-equivalence within a given class
C of topological spaces if for every pair X,Y of G-equivalent topological spaces
such that X,Y ∈ C , the space X has property T whenever Y has it. Extending
the well-established line of research in the classical Cp-theory of Arhangel’skĭı, in
[12] the authors showed that many important topological properties and cardinal
invariants are preserved by G-equivalence for certain classes of topological groups
G (that include the real line R).

Our main motivation for writing this manuscript was to present some classes
of topological groups G for which the Čech-Lebesgue (covering) dimension dim
is preserved by G-equivalence within the class of all Tychonoff spaces. Since this
class contains also the additive group R of reals with its standard topology, our
result covers also the famous theorem of Pestov who accomplished the effort of
a great number of mathematicians (see [1], [5], [9], [15], [16]) by proving that
l-equivalence (that is R-equivalence in our notation) preserves the covering di-
mension. This result was later generalized by Gulko for u-equivalence (see [4] for
details). Very recently M. Krupski generalized this result even for t-equivalence
in [7].

The manuscript is structured as follows. In Section 2 a topological version
of our main theorem is proved. We present this topological version in order to
emphasize that in the background of our main theorem (Theorem 4.2) no algebra
is needed. Section 3 collects some technical lemmas needed in the sequel. In
Section 4 our main general result (Theorem 4.2) is stated an proved. Roughly
speaking, this theorem says that if there exists a covariant functor F from some
subcategory of the category of Tychonoff spaces into a certain category of “topol-
ogized” R-modules, and if certain technical conditions on F are satisfied, then
spaces with the same image under F must have the same covering dimension. In
order to prove this theorem, we further develop the technique of Pestov from [10].

The rest of the paper is devoted to applications of Theorem 4.2.
A typical example of a functor satisfying the conditions of Theorem 4.2 is a

functor that assigns to each Tychonoff space its free topological module in cer-
tain class of topological modules. In Section 5 we recall the definition of the
free topological module over a topological space in a given class M of topologi-
cal R-modules that is closed under taking arbitrary products and R-submodules,
and we prepare the ground for application of our main theorem in Section 6.
There we prove that if the class M satisfies that the unit interval is M -Hausdorff
(see Definition 5.4(i)) and for every space of countable weight its free topological
R-module in M has countable network, then any two Tychonoff spaces having
topologically isomorphic their free R-modules in M must have the same dimension
(Theorem 6.1). In particular, if R is a topological ring with countable network
and M is a class of topological R-modules such that the closed unit interval is
M -Hausdorff, then every two Tychonoff spaces having topologically R-isomorphic



Module-valued functors preserving the covering dimension 379

their free topological modules in M must have the same dimension (Corollary 6.2).
Replacing general ring R with the discrete ring Z we obtain Corollary 6.3 in which
free topological modules in a given class of topological R-modules are replaced by
free abelian topological groups in a given class G of abelian topological groups.
In particular, we prove that if two Tychonoff spaces have topologically isomor-
phic their free precompact abelian groups, then their dimensions must coincide;
Corollary 6.4.

For a space X and a topological group G we associate in Section 8 the group
Cp(X,G) with certain topological module and prove that under some simple as-
sumption this module is a free topological module over X (Theorem 7.10). In
Section 8 we then use this result to derive that if a nontrivial abelian separable
metrizable pathwise connected groupG is NSS or has self-slender completion, then
G-equivalence preserves dimension; Theorem 8.5. In order to extend this result
for a wider class of topological groups, we show in Section 9 that if the pathwise
connected component c0(G) of identity of a topological group G is closed in G,
then G-equivalence implies c0(G)-equivalence; see Corollary 9.3. Finally, we use
the latter fact to prove our most general result about preservation of covering di-
mension by G-equivalence. Namely we prove that if G is a topological group such
that its pathwise connected component c0(G) is closed in G and c0(G) = Hκ,
where κ is an arbitrary nonzero cardinal, and H is a nontrivial abelian sepa-
rable metrizable group that is either NSS, or has self-slender completion, then
G-equivalence preserves the covering dimension.

2. Topological version of the main theorem

Definition 2.1. Let (P,≤) be a partially ordered set (poset). For P ⊆ P an
element q ∈ P is called the supremum of P provided that the following conditions
hold:

(i) p ≤ q for every p ∈ P ;
(ii) if r ∈ P is such that p ≤ r for every p ∈ P , then q ≤ r.

If the supremum of P exists, then it is unique, and we denote it by supP .

Definition 2.2. A subset P of a poset (P,≤) is:

(i) closed in (P,≤) provided that sup{pn : n ∈ N} ∈ P for every sequence
{pn : n ∈ N} ⊆ P such that p0 ≤ p1 ≤ · · · ≤ pn ≤ pn+1 ≤ . . . ,

(ii) unbounded in (P,≤) provided that for every q ∈ P there exists p ∈ P such
that q ≤ p,

(iii) a club in (P,≤) if P is both closed and unbounded in (P,≤).

Our next lemma is a part of folklore. We include its proof for the reader’s
convenience.

Lemma 2.3. Let {Pn : n ∈ N} be a sequence of clubs in a poset (P,≤). Then

P =
⋂
{Pn : n ∈ N} is a club in (P,≤).



380 Spěvák J.

Proof: Obviously, P is closed. To prove that it is unbounded fix an arbitrary
q ∈ P. Since each Pn is unbounded, using the standard diagonal argument we can
find a sequence {pi : i ∈ N} ⊆ P such that q ≤ p0 ≤ p1 ≤ · · · ≤ pi ≤ pi+1 ≤ . . .
and the set In = {i ∈ N : pi ∈ Pn} is infinite for every n ∈ N. Fix n ∈ N.
Let In = {i(j, n) : j ∈ N} be the order preserving one-to-one enumeration of
the infinite set In. Then pi(0,n) ≤ pi(1,n) ≤ · · · ≤ pi(j,n) ≤ pi(j+1,n) ≤ . . . is the
sequence of elements of Pn. Since Pn is closed in (P,≤), we have rn = sup{pi :
i ∈ In} = sup{pi(j,n) : j ∈ N} ∈ Pn.

Clearly, q ≤ pi(0,0) ≤ r0. It remains only to check that rn = r0 for every
n ∈ N \ {0}, as this would yield r0 ∈

⋂
{Pn : n ∈ N}.

Fix n ∈ N \ {0}. Let j ∈ N. Since I0 is infinite, there exists i0 ∈ I0 such that
pi(j,n) ≤ pi0 . From this and r0 = sup{pi : i ∈ I0}, we conclude that pi(j,n) ≤ r0.
Since this inequality holds for every j ∈ N, it follows that rn = sup{pi(j,n) : j ∈
N} ≤ r0. The reverse inequality is proved similarly, using the fact that the set In
is infinite. �

Definition 2.4. Let X be a space.

(i) We denote by Q(X) the class of all continuous functions from X onto
spaces with countable weight.

(ii) For f, f ′ ∈ Q(X) we write f � f ′ provided that there exists a continuous
map h : f ′(X) → f(X) such that f = h ◦ f ′.

(iii) For f, f ′ ∈ Q(X) we write f ≈ f ′ provided that both f � f ′ and f ′ � f
hold.

(iv) For f ∈ Q(X) we denote by [f ] the equivalence class of f with respect to
the equivalence relation ≈ on Q(X).

(v) Define PX = {[f ] : f ∈ Q(X)}. For [f ], [f ′] ∈ PX we define [f ] ≤ [f ′] by
f � f ′.

Clearly, PX is a poset. With a certain abuse of notation, in the sequel, we will
not distinguish between f ∈ Q(X) and its equivalence class [f ].

Our next lemma shows among others that the poset PX is closed under taking
suprema of countable subsets. Its straightforward proof is left to the reader.

Lemma 2.5. Let X be a space and S a countable subset of PX . Let f = △S :
X → f(X) ⊆

∏
g∈S g(X) be the diagonal product of the set S. Then f ∈ PX and

f = supS.

Definition 2.6. Let X be a space. For f ∈ PX we define |f | to be the function
from the set X to the set f(X). (In other words, |f | is an image of f under the
forgetful functor from the category of topological spaces to the category of sets.)
We put |PX | = {|f | : f ∈ PX}. If f, g ∈ |PX | we write f � g provided that there
exists a function h : g(X) → f(X) such that f = h ◦ g.

Lemma 2.7. Let X be a space and f, g′ ∈ PX . Assume that |f | � |g′|. Then

there exists g ∈ PX such that f ≤ g, g′ ≤ g and |g′| = |g| (and consequently

|g|(X) = |g′|(X)).
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Proof: Let Bg′ ,Bf be countable bases of the topology of g′(X) and f(X) respec-
tively. By our assumptions there exists function h : |g′|(X) → |f |(X), such that
|f | = h◦ |g′|. Put B = Bg′ ∪{h−1(U) : U ∈ Bf}. Then B is a countable subbase of
some topology T on |g′|(X). We claim that the function g : X → (|g′|(X), T ) is
continuous. Indeed, for V ∈ B there are two cases. If V ∈ Bg′ , then g−1(V ) is open
since g′ is continuous. If V = h−1(U) for some U ∈ Bf , then g−1(V ) = f−1(U)
is open due to the continuity of f . Thus g ∈ PX . By the construction of g, we
get |g′| = |g|. Since T is stronger then the topology of g′(X), we get g′ ≤ g. By
the construction of T , the function h : g(X) → f(X) is continuous. This gives us
f ≤ g. �

The following simple lemma can be derived from Lemmas 2.7 and 2.5. It verifies
that the condition (iii) of Theorem 2.11 makes sense.

Lemma 2.8. Let X be a space. If f, g ∈ |PX | are such that f � g and g � f ,

then f = g. In particular, |PX | is a poset. Furthermore, if S ⊆ PX is countable,

then sup |S| = |supS|.

The next two lemmas form an essence of the proof of Theorem 2.11.

Lemma 2.9. Let X be a Tychonoff space, n ∈ N and Sn(X) = {f ∈ PX :
dim f(X) ≤ n} then the following conditions are equivalent:

(i) dimX ≤ n;

(ii) Sn(X) is unbounded in PX ;

(iii) Sn(X) is a club in PX .

Proof: The equivalence of (i) and (ii) is proved in [10, Theorem 2]. The impli-
cation (ii)→(iii) can be found for example in [11, Lemma 11]. The implication
(iii)→(ii) is trivial. �

Let X, Y be sets and 2Y be a set of all nonempty subsets of Y . We call a
mapping F : X → 2Y a set-valued mapping from X to Y and denote this fact
by the symbol F : X ⇒ Y . A mapping F : X ⇒ Y is called finite-valued

provided that F (x) is finite for every x ∈ X . When X and Y are spaces, a set-
valued mapping F : X ⇒ Y is called lower semi-continuous (abbreviated by lsc)
provided that the set

F−1(U) = {x ∈ X : F (x) ∩ U 6= ∅}

is open in X for every open set U ⊆ Y .
The next lemma is a particular case of [13, Corollary 5.4].

Lemma 2.10. For i ∈ {0, 1} let Xi be a separable metric space, and ϕi : Xi ⇒
X1−i a finite-valued lsc mapping such that for every x1 ∈ X1 there exists x0 ∈
ϕ1(x1) with x1 ∈ ϕ0(x0). Then dimX1 ≤ dimX0.

Theorem 2.11. For i ∈ {0, 1} let Xi be a Tychonoff space and fi : PXi
→ PX1−i

a map satisfying the following conditions:

(i) |fi(f)| � |fi(g)| for all f, g ∈ PXi
such that |f | � |g|;
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(ii) for hi = f1−i ◦ fi we have |f | � |hi(f)| for every f ∈ PXi
;

(iii) sup{|fi(f)| : f ∈ s} = |fi(sup s)| for every increasing sequence s ⊆ PXi
;

(iv) for each f ∈ PXi
there exists finite-valued lsc mapping ϕ|f |,i : fi(f)(X1−i)

⇒ f(Xi) (that depends only on |f |) such that if f ∈ PX0
, then for every

x1 ∈ X1 there exists x0 ∈ ϕ|f |,0(x1) satisfying x1 ∈ ϕ|f0(f)|,1(x0) whenever

|h0(f)| = |f |;
(v) for every increasing sequence si = (f0, f1, . . .) in PXi

and every increasing

sequence s1−i = (g0, g1, . . .) in PX1−i
such that |fi(fn)| = |gn| and ϕ|fn|,i :

gn(X1−i) ⇒ fn(Xi) is lsc for all n ∈ N, the mapping ϕ|f |,i : fi(f)(X1−i) ⇒
f(Xi) is lsc, where f = sup si.

Then dimX1 ≤ dimX0.

Proof: If dimX0 is infinite, the desired inequality follows. Otherwise dimX0 =
n for some n ∈ N. Let P be a subset of PX0

× PX1
consisting of all pairs (f0, f1)

such that |f1−i| = |fi(fi)| holds for some i ∈ {0, 1}. We take P with the product
order inherited from PX0

× PX1
.

Claim 1. Let i ∈ {0, 1}, and assume that K is a club in PXi
. Then the set

AK = {(f0, f1) : fi ∈ K, |f1−i| = |fi(fi)|}, is a club in P .

Proof: To show that AK is unbounded fix (f0, f1) ∈ P arbitrarily. By our
assumption, there exists gi ∈ K such that fi ≤ gi. Put g′1−i = fi(gi). Then
|f1−i| � |g′1−i|. Indeed, if |f1−i| = |fi(fi)|, then the inequality follows directly from
(i) and if |fi| = |f1−i(f1−i)|, then |f1−i| � |h1−i(f1−i)| � |g′1−i| by (ii). Thus, by
Lemma 2.7, there exists g1−i ∈ PX1−i

such that f1−i ≤ g1−i and |g′1−i| = |g1−i|.
Clearly, (g0, g1) ∈ AK and (f0, f1) ≤ (g0, g1).

The fact that AK is closed follows immediately from the assumption that K is
closed in PXi

and from (iii). �

Claim 2. The setB ⊆ P consisting of all pairs (f0, f1) ∈ P such that dim f0(X0) ≤
n and |f1| = |f0(f0)| is a club in P .

Proof: By Lemma 2.9, Sn(X0) is a club in PX0
. Hence the conclusion follows

from Claim 1. �

Claim 3. For both i ∈ {0, 1} the set Ci ⊆ P consisting of all pairs (f0, f1) such
that |f1−i| = |fi(fi)| and the function ϕ|fi|,i : f1−i(X1−i) ⇒ fi(Xi) is lsc is a club
in P .

Proof: By Claim 1, the set Ai = {(f0, f1) ∈ P : |f1−i| = |fi(fi)|} is a club
in P . Since Ci ⊆ Ai, it suffices to prove that Ci is a club in Ai. To show
that Ci is unbounded, pick (f0, f1) arbitrarily. Put gi = fi and g′1−i = fi(fi).
By (iv), the finite valued mapping ϕ|fi|,i : g′1−i(X1−i) ⇒ fi(Xi) is lsc. Since
|f1−i| = |fi(fi)| = |g′1−i|, Lemma 2.7 implies existence of g1−i ∈ PX1−i

such that
f1−i ≤ g1−i, |g′1−i| = |g1−i| and g′1−i ≤ g1−i. In particular, the topology of
g1−i(X1−i) is stronger then that of g′1−i(X1−i). Hence ϕ|fi|,i : g1−i(X1−i) ⇒
fi(Xi) is lsc, and (f0, f1) ≤ (g0, g1) ∈ Ci.

The fact that Ci is closed follows directly from (iii) and (v). �
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By Lemma 2.9, to show that dimX1 ≤ n we have to prove that Sn(X1) is
unbounded in PX1

. To do so, pick f1 ∈ PX1
arbitrarily and put f0 = f1(f1). Then

(f0, f1) ∈ P . Put D = B ∩ C0 ∩ C1. Then D is a club in P by Lemma 2.3.
Therefore, there exists (g0, g1) ∈ D such that (f0, f1) ≤ (g0, g1). By the definition
of D it follows that dim g0(X0) ≤ n, ϕ|gi|,i : g1−i(X1−i) ⇒ gi(Xi) is lsc for both
i ∈ {0, 1}, and h0(g0) = g0. Now, from (iii) we get that for every x1 ∈ X1

there exists x0 ∈ ϕ|g0|,0(x1) satisfying x1 ∈ ϕ|g1|,1(x0). Applying Lemma 2.10, we
conclude that dim g1(X1) ≤ dim g0(X0) ≤ n. Thus, g1 ∈ Sn(X1) satisfies f1 ≤ g1.
This finishes the proof. �

3. Technical lemmas

Lemma 3.1. Let X be a separable metric space and Y a space with a countable

network. Assume that ϕ : Y ⇒ X is an lsc mapping. Then there exists weaker

separable metrizable topology T on the underlying set |Y | of Y such that ϕ :
(|Y |, T ) ⇒ X is lsc.

Proof: Since (Y, TY ) is a space with a countable network, there is a topology T ′

on Y with a countable base B such that T ′ ⊆ TY . (A proof of this simple folklore
fact can be found, for example, in the appendix of [6].)

Let C be a countable base of the topology of X . Then {ϕ−1(U) : U ∈ C}∪B is
a countable subbase of topology T on |Y |. Since ϕ is lsc, it follows that T ⊆ TY .
By the definition of T , ϕ : (|Y |, T ) ⇒ X is lsc. �

An R-module is a left module over a ring R. The additive identities of a
ring R and a module M will be denoted by 0R and 0M respectively. Having
R-modules M,M ′ and a mapping f : M → M ′, it may happen that f is a
homomorphism with respect to the (abelian) group structure of M and M ′ but
it is not a homomorphism with respect to their module structure. To avoid
confusion, we will call a homomorphism with respect to the R-module structure
an R-homomorphism, while the term homomorphism will be reserved for a group
homomorphism. In the same spirit we shall use the terms like R-isomorphism or
R-isomorphic.

Definition 3.2. For an R-module M , a set X ⊆M is called:

(i) generating if every element ofM is a finite sum of elements ofX multiplied
by coefficients in R, or equivalently, if M is the smallest R-submodule of
M containing X ;

(ii) free if
∑k

i=1 rixi = 0M implies r1 = r2 = . . . = rk = 0R whenever k ∈ N,
r1, . . . , rk ∈ R and the elements x1, . . . , xk ∈ X are pairwise distinct;

(iii) a basis of M if X is both generating and free.

A free R-module is an R-module that has a free basis.

Definition 3.3. Let M be a free R-module with a free basis X . It follows from
items (i) and (ii) of Definition 3.2 that for every a ∈ M there exist the unique
finite set Ka ⊆ X and the unique family {rx : x ∈ Ka} ⊆ R \ {0R} of scalars such
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that

(1) a =
∑

x∈Ka

rxx.

We shall call (1) the canonical representation of a with respect to X and we define
the support function ϕX : M ⇒ X by ϕX(a) = Ka for all a ∈M .

The straightforward proof of the following lemma is left to the reader.

Lemma 3.4. Let M,N be R-modules and let X be a free basis of M . Then:

(i) for every function f : X → N there exists the unique R-homomorphism

f̂ : M → N extending f ;

(ii) if Y is a free basis of N and f : M → N is an R-homomorphism such

that f(X) = Y , then ϕY (f(a)) ⊆ f(ϕX(a)) for every a ∈M ;

(iii) if Z is a free basis of M , then for every x ∈ X there exists z ∈ ϕZ(x)
such that x ∈ ϕX(z).

Lemma 3.5. Let M be an R-module with a free basis X . For every i ∈ N let Mi

be an R-module, fi : M →Mi be an R-homomorphism and pi : Mi+1 →Mi be an

R-homomorphism such that fi = pi ◦ fi+1 and fi(X) is the free basis of Mi. Let

f = △{fi : i ∈ N} be the diagonal product of the family {fi : i ∈ N}. For every

i ∈ N let πi : f(M) →Mi be the unique R-homomorphism satisfying fi = πi ◦ f .

Then:

(i) f(X) is the free basis of f(M);
(ii) for every z ∈ f(M) there exists n ∈ N such that πm(ϕf(X)(z)) =

ϕfm(X)(πm(z)) for all integers m ≥ n.

Furthermore, let T be a topology on M and for every i ∈ N let Ti be a topology

on Mi such that the maps fi : (M, T ) → (Mi, Ti) and pi : (Mi+1, Ti+1) → (Mi, Ti)
are continuous and the map ϕi = ϕfi(X) : Mi ⇒ fi(X) is lsc with respect to Ti.

Then:

(iii) the support function ϕf(X) : f(M) ⇒ f(X) is lsc with respect to the

subspace topology inherited by f(M) from the Tychonoff product∏
i∈N

(Mi, Ti).

Proof: For every finite set Y ⊆ f(M) one can easily choose n ∈ N such that

(2) πm(y) 6= πm(y′) whenever m ∈ N,m ≥ n, y, y′ ∈ Y and y 6= y′.

This easily implies (i). To check (ii), pick z ∈ f(M) arbitrarily. Apply the above
observation to Y = ϕf(X)(z) ⊆ f(X) to fix n ∈ N satisfying (2). Fix m ∈ N

with m ≥ n. Let z =
∑

y∈Y ryy be the canonical representation of z with respect

to f(X). Since fm(X) is the free basis of Mm = πm(M), {πm(y) : y ∈ Y } ⊆
πm(f(X)) = fm(X) and πm(z) = πm(

∑
y∈Y ryy) =

∑
y∈Y ryπm(y), it follows

that ϕfm(X)(πm(z)) = {πm(y) : y ∈ Y } = πm(Y ) = πm(ϕf(X)(z)).
To prove (iii), fix an open subset U of f(X). We have to show that the set

ϕ−1
f(X)(U) is open in f(M). Without loss of generality, we may assume that U is
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a basic open set; that is, U = π−1
k (Uk) for some k ∈ N and an open subset Uk of

fk(X). For every integer m ≥ k the set Um = (pk ◦ pk+1 ◦ . . . ◦ pm−1)
−1(Uk) is

open in fm(X) and π−1
m (Um) = U .

Let z ∈ ϕ−1
f(X)(U). Then ϕf(X)(z)∩U 6= ∅. By (ii), there exists an integer m ≥

k such that πm(ϕf(X)(z)) = ϕfm(X)(πm(z)) = ϕm(πm(z)). From ϕf(X)(z)∩U 6= ∅
we get

πm(ϕf(X)(z)) ∩ πm(U) = πm(ϕf(X)(z)) ∩ Um = ϕm(πm(z)) ∩ Um 6= ∅.

Consequently, z ∈ π−1
m (ϕ−1

m (Um)). Since ϕm is lsc and Um is open in Xm, the
set ϕ−1

m (Um) is open in Mm. Since πm is continuous, V = π−1
m (ϕ−1

m (Um)) is an
open subset of f(M). To finish the proof, it remains to show that V ⊆ ϕ−1

f(X)(U).

Let x ∈ V . Then πm(x) ∈ ϕ−1
m (Um), and so ϕm(πm(x)) ∩ Um 6= ∅. Since

ϕm(πm(x)) ⊆ πm(ϕf(X)(x)) by Lemma 3.4(ii), this yields πm(ϕf(X)(x))∩Um 6= ∅.

Therefore, ϕf(X)(x) ∩ π
−1
m (Um) = ϕf(X)(x) ∩ U 6= ∅, and so x ∈ ϕ−1

f(X)(U). �

4. Main theorem

Let us first recall several basic notions from the category theory.
Let A,B be categories. We use Ob(A) to denote the class of all objects of

A, and Mor(A) to denote the class of all morphisms of A. If X,Y ∈ Ob(A),
then hom(X,Y ) stays for the set of all A-morphisms from X to Y and idX ∈
hom(X,X) denotes the identity morphism on X . If f ∈ hom(X,Y ) then we call
X a domain and Y a codomain of f . We say that a functor U : A → B is
faithful provided that it is injective on hom(A,B) for all A,B ∈ Ob(A). By IdA
we denote the identity functor from A to A. If F,G : A → B are functors, then
a natural transformation η from F to G is a map that assigns to each A ∈ Ob(A)
a morphism ηA ∈ hom(F (A), G(A)) in such a way that for every morphism f ∈
hom(A,A′) ⊆Mor(A) it holds

ηA′ ◦ F (f) = G(f) ◦ ηA.

As usual Top stays for the category of all topological spaces and their continuous
mappings and Tych for its full subcategory of all Tychonoff spaces.

Here comes the definition of an embedding functor in terms of natural trans-
formation.

Definition 4.1. Let T be a subcategory of the category Top. We say that
a functor F : T → Top is an embedding functor provided that there exists a
natural transformation η between IdT and F such that ηX ∈ hom(X,F (X)) is a
homeomorphic embedding for each X ∈ Ob(T).

Now we can state the main theorem in a categorial fashion:

Theorem 4.2. Let T be some full subcategory of Tych containing all separable

metrizable spaces. Let M be some subcategory of Tych consisting of R-modules
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and R-homomorphisms. Let F : T → M be an embedding functor with natural

transformation η such that for all X ∈ Ob(T)

(i) ηX(X) is a free basis of F (X) and

(ii) if X has a countable weight, then F (X) has countable network and the

support function ϕηX (X) : F (X) ⇒ ηX(X) is lsc.

Let X0, X1 ∈ Ob(T), and assume that F (X0) and F (X1) are isomorphic in M.

Then dimX0 = dimX1.

Proof: Without loss of generality, we may identify X with ηX(X) for every
X ∈ T, and we may assume that F (X0) = F (X1) = M . Thus both, X0 and X1,
form a free basis of M and every (continuous) function f : Xi → f(Xi), where
f(Xi) ∈ Ob(T), can be uniquely extended to a (continuous) R-homomorphism
F (f) : M → F (M) for both i ∈ {0, 1}.

It suffices to prove that dimX1 ≤ dimX0 since the other inequality follows
then from symmetry.

For both i ∈ {0, 1} and every f ∈ PXi
consider the space Y1−i = F (f)(X1−i).

By (ii) it has a countable network and the finite-valued function ϕ|f |,i =ϕf(Xi)↾Y1−i

is lsc. By Lemma 3.1 there exists a weaker separable metric topology T on
the underlining set |Y1−i| of Y1−i such that ϕ|f |,i : (|Y1−i|, T ) ⇒ f(Xi) is lsc.
Let ιf,i : Y1−i → (|Y1−i|, T ) be the (continuous) identity mapping. Define
fi(f) = ιf,i ◦ F (f) ↾X1−i

. Clearly, fi(f) ∈ PX1−i
. We claim that Xi, the map

fi : PXi
→ PX1−i

and the finite-valued mapping ϕ|f |,i : fi(f)(X1−i) ⇒ f(Xi)
satisfy conditions (i)–(v) of Theorem 2.11 for every i ∈ {0, 1} and every f ∈ PXi

.
Conditions (i) and (ii) follow immediately from Lemma 3.4(i). Condition (iii)

follows from Lemmas 3.5(i) and 2.5. The first part of condition (iv) is satisfied by
the definition of ϕ|f |,i and the second part follows from Lemma 3.4(iii). Finally,
condition (v) is satisfied by Lemmas 2.5 and 3.5(iii). Applying Theorem 2.11 gives
us dimX1 ≤ dimX0. �

5. Background on free topological modules

Recall that a topological ring is a ring R which is also a topological space such
that both the addition and the multiplication are continuous as maps from R×R
to R. By a topological R-module we mean a module M over a topological ring R
which carries at the same time a topology that makesM with the group operations
a topological group and the scalar multiplication (r, x) 7→ rx continuous as a map
from R ×M to M .

Definition 5.1. Let M be a class of topological R-modules. By MR we denote
the smallest class of topological R-modules containing M that is closed under
taking arbitrary products and (topological) R-submodules.

If M = MR, then we will say that the class M is R-closed .

Definition 5.2. Let M be an R-closed class of topological modules. We say
that F ∈ M is a free topological module over a space X in M provided that there
exists η ∈ C(X,F ) called a unit of F such that, for every M ∈ M and each
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f ∈ C(X,M), one can find a unique continuous R-homomorphism f̂ : F → M

satisfying f = f̂ ◦ η.

The next proposition about existence and uniqueness of free topological mod-
ules is a well-known particular case of the Freyd Adjoint Functor Theorem [3].
For the construction of free topological modules we refer the reader to the proof
of Proposition 5.7.

Proposition 5.3. Let M be an R-closed class of topological modules and X a

topological space. Then there exists a free topological module F over X in M

with a unit η. Furthermore, if F ′ is a free topological module over X in M with

a unit η′, then there exists a topological R-isomorphism φ : F → F ′ such that

η′ = φ ◦ η.

Definition 5.4. Let M be some class of topological R-modules. We say that a
topological space X is:

(i) M -Hausdorff provided that for every y ∈ X , each x ∈ X \ {y} and all
r ∈ R \ {0R}, there exist M ∈ M and f ∈ C(X,M) such that f(y) = 0M

and rf(x) 6= 0M ;
(ii) M -regular if for every closed A ⊆ X , every x ∈ X \ A and each r ∈

R \ {0R}, there exist M ∈ M and f ∈ C(X,M) such that f(A) ⊆ {0M}
and rf(x) 6= 0M .

Lemma 5.5. Let M be some class of topological R-modules. Suppose that the

closed unit interval [0, 1] is M -Hausdorff. Then every Tychonoff space is M -

regular.

Proof: Let X be Tychonoff, A ⊆ X closed, x ∈ X \ A and r ∈ R \ {0R}. Then
there exists f ∈ C(X, [0, 1]) such that f(A) ⊆ {0} and f(x) = 1. Since [0, 1]
is M -Hausdorff, there exist M ∈ M and g ∈ C([0, 1],M) such that g(0) = 0M

and rg(1) 6= 0M . Then the function g ◦ f ∈ C(X,M) witnesses that X is M -
regular. �

Proposition 5.6. Let M be an R-module with a free basis X and T some

topology on M . Assume that for every T ↾X -closed subset A of X , all x ∈ X \A
and each scalar r ∈ R \ {0R}, there exist some R-module M ′ with a topology

T ′ and a continuous R-homomorphism f : (M, T ) → (M ′, T ′) such that f(A) ⊆
{0M ′} and rf(x) 6= 0M ′ . Then ϕX : (M, T ) ⇒ (X, T ↾X) is lsc.

Proof: Let U be an arbitrary open subset of X (with respect to T ↾X), and as-
sume that z ∈ ϕ−1

X (U). We have to show that there exists an open set V in (M, T )

such that z ∈ V ⊆ ϕ−1
X (U). Let z =

∑n
i=1 rixi, where n ∈ N, x1, . . . , xn ∈ X

are pairwise distinct and r1, . . . , rn ∈ R \ {0R}. Since ϕX(z) is finite, there is
some open set U ′ ⊆ U such that U ′ ∩ ϕX(z) = {xk} for some k ∈ {1, . . . , n}.
Put A = X \ U ′. By our assumption, there exist an R-module M ′ with a topol-
ogy T ′ and a continuous R-homomorphism f : (M, T ) → (M ′, T ′) such that
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f(A) ⊆ {0M ′} and rkf(xk) 6= 0M ′ . Thus we get

f(z) = f

(
n∑

i=1

rixi

)
=

n∑

i=1

rif(xi) = rkf(xk) 6= 0M ′ .

It follows that z ∈ V = f−1(M ′ \ {0M ′}), where V is open by the continuity
of f . Pick z′ ∈ V arbitrarily. Observe that ϕX(z′) ⊆ A would imply f(z′) = 0M ′ ,
because f(A) ⊆ {0M ′}. Therefore, since f(z′) 6= 0M ′ , we get ϕX(z′) ∩ U ′ 6= ∅.
Consequently, V ⊆ ϕ−1

X (U), and ϕX is lsc. �

Proposition 5.7. Let M be an R-closed class of topological modules, X an M -

regular topological space and F the free topological module over X in M with a

unit η. Then:

(i) η is a homeomorphic embedding,

(ii) η(X) is a free basis of F , and

(iii) the support function ϕη(X) : F ⇒ η(X) is lsc.

Proof: There exists an indexed set {(Ms, fs) : s ∈ S} such that:

(a) for each s ∈ S, Ms ∈ M , fs : X → Ms is continuous and fs(X) gene-
rates Ms;

(b) ifM ∈ M and f : X →M is a continuous function, then there exist t ∈ S,
a submodule M ′

t of M and a topological R-isomorphism it : Mt → M ′
t

such that f = it ◦ ft.

The diagonal product η′ = △s∈Sfs : X →
∏

s∈S Ms of the family {fs : s ∈ S}
is a continuous function. Let F ′ be the R-submodule generated by η′(X) in
the topological R-module

∏
s∈S Ms. Since M is R-closed, we have F ′ ∈ M .

Let M ∈ M and f ∈ C(X,M). Let t ∈ S and it be as in the conclusion
of item (b), and let πt :

∏
s∈S Ms → Mt be the projection on t’s coordinate.

Then g = it ◦ πt ↾F ′ : F ′ → M ′
t is a continuous R-homomorphism such that

g ◦ η = it ◦ πt ↾F ′ ◦η′ = it ◦ ft = f . Since η′(X) generates F ′, it follows that g is
unique. We have verified that F ′ is a free topological module over X in M with
a unit η′.

By Proposition 5.3, the free topological module F over X in M and its unit
η are unique up to a topological R-isomorphism. Thus, we may assume, without
loss of generality, that F = F ′ and η = η′.

(i) Since X is M -regular, continuous functions from X to elements of M

separate points and closed sets. Consequently, the unit η : X → F , being the
diagonal mapping, is a homeomorphic embedding.

(ii) The set η(X) is generating for F by the construction of η and F . To
show that it is a free set, take pairwise distinct points x1, . . . , xn ∈ η(X) and
scalars r1, . . . , rn ∈ R such that

∑n
i=1 rixi = 0F . Suppose, for contradiction, that

rk 6= 0R for some integer k satisfying 1 ≤ k ≤ n. Since X is M -regular, so is η(X)
by (i). Thus, there exist M ∈ M and f ∈ C(η(X),M) such that rkf(xk) 6= 0M

and f(xj) = 0M for all j 6= k.
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Since F is the free module over X , there exists a unique continuous R-homo-

morphism f̂ : F →M that extends f ◦ η. Now

0M = f̂(0F ) = f̂




n∑

j=1

rjxj



 =

n∑

j=1

rjf(xj) = rkf(xk) 6= 0M

gives a contradiction.
(iii) Since η(X) is a free basis of F , the support function ϕη(X) is well defined.

Finally, observe that since η(X) is M -regular and every f ∈ C(X,M) can be
extended to a continuous R-homomorphism for all M ∈ M , conditions of Propo-
sition 5.6 are satisfied (with F at the place of M and η(X) at the place of X).
Item (iii) follows. �

6. Applications to free topological modules

Theorem 6.1. Let M be an R-closed class of topological modules. Assume

that the closed unit interval [0, 1] is M -Hausdorff and the free topological module

F (Z) over Z in M has countable network whenever Z has countable weight. If

X, Y are Tychonoff spaces and F (X), F (Y ) are topologically R-isomorphic free

topological modules over X and Y in M respectively, then dimX = dimY .

Proof: Let T be the category of all Tychonoff spaces and for every X ∈ Ob(T)
let F (X) denote the free topological module over X in M .

Let M be the category having as objects the class M and as morphisms all
continuous R-homomorphisms between objects of M. Since the closed unit in-
terval is M -Hausdorff, every X ∈ Ob(T) is M -regular by Lemma 5.5. There-
fore, Proposition 5.7 verifies that the functor F : T → M that assigns to each
X ∈ Ob(T) the free topological module F (X) and to each f ∈Mor(T) the unique
extension F (f) ∈ Mor(M) of f satisfies the conditions of Theorem 4.2. Conse-
quently, if F (X) and F (Y ) are topologically R-isomorphic Tychonoff spaces, then
dimX = dim Y . �

Corollary 6.2. LetR be a topological ring with a countable network, M be anR-

closed class of topological modules, and assume that the closed unit interval [0, 1]
is M -Hausdorff. If X, Y are Tychonoff spaces and F (X), F (Y ) are topologically

R-isomorphic free topological modules over X and Y in M respectively, then

dimX = dim Y .

Proof: Let Z be a space with a countable weight, F (Z) the free topological
module over Z in M , and ηZ a unit of F (Z). Since network weight is preserved
by continuous mappings, ηZ(Z) has a countable network. Since F (Z) is generated
by ηZ(Z) (see the proof of Proposition 5.7), and R has a countable network, F (Z)
has a countable network. It remains to apply Theorem 6.1. �

Since every abelian topological group can be viewed as a topological Z-module,
where Z is taken with the discrete topology, we immediately obtain the following



390 Spěvák J.

result (for a definition of the free abelian topological group over a space X in a
given class of topological groups see [12]).

Corollary 6.3. Let G be a Z-closed class of abelian topological groups, and as-

sume that the closed unit interval [0, 1] is G -Hausdorff. If X, Y are Tychonoff

spaces and F (X), F (Y ) are topologically isomorphic free abelian topological

groups over X and Y in G respectively, then dimX = dimY .

Recall that a topological group is called precompact if it is a subgroup of some
compact topological group. The free topological group over a space X in the class
of all (abelian) precompact groups is then called the free precompact (abelian)
group over X .

Corollary 6.4. If Tychonoff spaces X and Y have topologically isomorphic their

free precompact abelian groups, then dimX = dimY .

Proof: Obviously, the class P of all precompact abelian groups is closed under
taking arbitrary products and (topological) subgroups. In order to apply Corol-
lary 6.3, we have to show that the closed unit interval [0, 1] is P-Hausdorff. The
group T = R/Z is (pre)compact, abelian and pathwise connected. Let t be an
arbitrary non-torsion element of T, and x and y be two distinct points of [0, 1].
Since T is pathwise connected, there exists a continuous function f : [0, 1] → T

such that f(x) = t and f(y) = 0T. Since t is non-torsion, we have rf(x) 6= 0T for
every r ∈ Z \ {0}. Thus, the closed unit interval [0, 1] is P-Hausdorff. �

Corollary 6.3 can be further generalized for some non-abelian free topological
groups. It was proved in [12, Theorem 9.9] that if G ′ ⊆ G are two classes of
topological groups, and X and Y topological spaces such that the free topological
groups over X and Y in G are topologically isomorphic, then the free topological
groups over X and Y in G ′ are topologically isomorphic as well. This together
with Corollary 6.3 gives the following result.

Corollary 6.5. Let G ′ be a Z-closed class of abelian topological groups, and

assume that the closed unit interval [0, 1] is G ′-Hausdorff. Suppose that G is

some class of topological groups containing G ′.

If X, Y are Tychonoff spaces and F (X), F (Y ) are topologically isomorphic

free topological groups over X and Y in G respectively, then dimX = dimY .

Remark 6.6. Let us note that Theorem 4.2 can be stated in a more general
way, where the R-module structure can be replaced by a more general algebraic
structure that includes free groups as well. Stronger version of Corollary 6.5 would
then follow from such a generalization. However, this topic exceeds the scope of
this paper, since we are mostly interested in applications to G-equivalence.

7. Homp(Cp(X,G), G) as a free module

For a topological group H we denote by Hom(G,H) the subset of C(G,H)
consisting of all continuous group homomorphisms. It is well known and easy to
observe that if H is abelian, then Hom(G,H) is a subgroup of C(G,H).
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Let G be an abelian topological group. For f, g ∈ C(G,G) define the multipli-
cation fg ∈ C(G,G) by fg(x) = f ◦ g(x) for all x ∈ G. The group Hom(G,G)
together with such multiplication forms a ring that is called the endomorphism

ring of G and denoted by End(G). If not stated otherwise, we will consider
End(G) with the discrete topology.

For topological groups G and H , we denote by Homp(G,H) the set Hom(G,H)
equipped with the topology of pointwise convergence (so that Homp(G,H) be-
comes the topological subgroup of Cp(G,H)).

Recall that every abelian topological group G can be naturally considered as
a topological End(G)-module. Indeed, for r ∈ End(G) and g ∈ G the scalar
multiplication of r and g is defined by rg = r(g).

Similarly, if X is a set, then GX , being the product of topological End(G)-
modules, is itself a topological End(G)-module. Here the scalar multiplication for
r ∈ End(G) and f ∈ GX is defined pointwisely; that is, rf(x) = r(f(x)) for all
x ∈ X .

Lemma 7.1. Let G be an abelian topological group and X a topological space.

Then Cp(X,G) is an End(G)-submodule of GX , and Homp(Cp(X,G), G) is an

End(G)-submodule of GCp(X,G).

Definition 7.2. LetG be an abelian topological group,X a set, andH a subspace
of GX .

(i) By πB : GX → GB , where B ⊆ X , we denote the projection.
(ii) We define ψH : X → C(H,G) by ψH(x) = π{x} ↾H for x ∈ X .

If M and N are topological R-modules, we denote by HomR(M,N) the sub-
group of Hom(M,N) consisting of all continuousR-homomorphisms fromM toN .

Lemma 7.3. Let G be an abelian topological group, X a set and H an End(G)-
submodule of GX . Then πB is a continuous End(G)-homomorphism for every

B ⊆ X . Consequently, πB ↾H is a continuous End(G)-homomorphism for all

B ⊆ X . In particular, ψH(X) ⊆ HomEnd(G)(H,G).

Given an R-module M and its subset X , we denote by 〈X〉R the R-submodule
of M generated by X .

Proposition 7.4. Let G be an abelian topological group and X a space. Put

η = ψCp(X,G), and consider the End(G)-submodule M = 〈η(X)〉End(G) of the

End(G)-module Homp(Cp(X,G), G). Then M is the free topological module over

X in the class {G}End(G) of topological End(G)-modules, and η is its unit.

Proof: It suffices to prove that

(i) M ∈ {G}End(G), and

(ii) for every H ∈ {G}End(G) and each f ∈ C(X,H) there exists a unique

continuous End(G)-homomorphism f̄ : M → H such that f = f̄ ◦ η.

Since M is an End(G)-submodule of Homp(Cp(X,G), G) and the latter module

is an End(G)-submodule of GC(X,G) by Lemma 7.1, item (i) follows from the fact
that {G}End(G) is End(G)-closed.
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To prove (ii), fix H ∈ {G}End(G) and f ∈ C(X,H). Since H ∈ {G}End(G),

there exists a set A such that H is an End(G)-submodule of GA. For every a ∈ A
put fa = πa ◦ f , where πa : GA → G is the projection on ath coordinate. Clearly,
fa ∈ Cp(X,G) for all a ∈ A, and f = △{fa : a ∈ A} is the diagonal product. For
each a ∈ A define f̄a : M → G by f̄a(µ) = µ(fa) for every µ ∈ M . That is, f̄a

is the projection at fa. Thus, by Lemma 7.3 (with M instead of H and C(X,G)
instead of X), f̄a ∈ HomEnd(G)(M,G).

By the definition of η we have

fa(x) = π{x}(fa) = f̄a(π{x}) = f̄a(η(x)) = f̄a ◦ η(x)

for every x ∈ X . Consequently, f̄ = △{f̄a : a ∈ A} is a continuous End(G)-
homomorphism from M to GA such that f = f̄ ◦η. Since H is an End(G)-module,
M = 〈η(X)〉End(G) and f̄(η(X)) ⊆ H , it follows that f̄ is the unique continuous

End(G)-homomorphism satisfying f = f̄ ◦ η and f̄(M) ⊆ H . �

Lemma 7.5. Let G be an abelian topological group, B a finite set and ν : GB →
G a continuous homomorphism. Then for every b ∈ B there exists a unique

rb ∈ End(G) such that ν =
∑

b∈B rb ◦ πb, where πb : GB → G is the projection

defined by πb(g) = g(b) for b ∈ B.

Proof: For a ∈ B let θa : G → GB be the unique homomorphism satisfying
πa ◦ θa(g) = g and πb ◦ θa(g) = 0 for every g ∈ G and b ∈ B \ {a}. Then the
endomorphisms rb = ν ◦ θb ∈ End(G) (b ∈ B) are as required. �

Definition 7.6. Let X be a set, G a topological group, H a subgroup of GX

and µ ∈ Hom(H,G).

(i) We say that B ⊆ X is a supporting set for µ, or B supports µ, provided
that f(B) ⊆ {e} implies µ(f) = e for every f ∈ H .

(ii) By S(µ) we denote the set {B ⊆ X : B supports µ}.
(iii) We say that µ is finitely supported provided there exists some finite K ∈

S(µ).

Lemma 7.7. Let X be a set, G a topological group, H a subgroup of GX ,

µ ∈ Hom(H,G) and B ∈ S(µ). If f, g ∈ H and f ↾B= g ↾B, then µ(f) = µ(g).

Proof: Since (fg−1)(B) ⊆ {e}, it follows that µ(fg−1) = e. Consequently,
µ(f) = µ(fg−1g) = µ(fg−1)µ(g) = µ(g). �

Proposition 7.8. Let G be an abelian topological group, X a set and H a

subgroup of GX such that πK ↾H is surjective for every finite set K ⊆ X . Then

〈ψH(X)〉End(G) = Hom(H,G) if and only if every µ ∈ Hom(H,G) is finitely

supported.

Proof: We start with the “only if” part. Take µ ∈ 〈ψH(X)〉End(G) = Hom(H,G).

Then µ =
∑n

i=1 riψH(xi) for some n ∈ N, x1, . . . , xn ∈ X and r1, . . . , rn ∈
End(G). Clearly, {x1, . . . , xn} ∈ S(µ), and thus µ is finitely supported.



Module-valued functors preserving the covering dimension 393

To prove the “if” part, take µ ∈ Hom(H,G) and a finite set B ∈ S(µ). By
our assumption on H , χ = πB ↾H is surjective, so for every g ∈ GB we can
chose fg ∈ χ−1(g). Define ν : GB → G by ν(g) = µ(fg) for g ∈ GB . By
Lemma 7.7, µ(f) = µ(fg) whenever f ∈ H and χ(f) = χ(fg), so ν is well-
defined. A straightforward verification shows that ν : GB → G is a continuous
homomorphism. Clearly, µ = ν ◦ χ. For b ∈ B let rb ∈ End(G) be as in the
conclusion of Lemma 7.5. Then µ =

∑
b∈B rb ◦ πb ◦ χ. Since πb ◦ χ = ψH(b), we

get µ =
∑

b∈B rb ◦ ψH(b). Thus µ ∈ 〈ψH(X)〉End(G). �

We will need the notion of G⋆⋆-regularity from [12]. Given a topological group
G, a topological space X is called G⋆⋆-regular provided that, whenever g ∈ G,
x ∈ X and F is a closed subset of X satisfying x /∈ F , there exists f ∈ Cp(X,G)
such that f(x) = g and f(F ) ⊆ {e}.

Lemma 7.9. Let G be a topological group and X a G⋆⋆-regular space. Then

πK ↾Cp(X,G) is surjective for every finite set K ⊆ X . In particular, Cp(X,G) is

dense in GX .

Theorem 7.10. Let G be an abelian topological group, and X a G⋆⋆-regular

space such that every µ ∈ Homp(Cp(X,G), G) is finitely supported. Then

Homp(Cp(X,G), G) is the free topological module over X in the class {G}End(G).

Proof: Since X is G⋆⋆-regular, the conclusion of Lemma 7.9 shows that the
assumptions of Proposition 7.8 are satisfied. Therefore, Homp(Cp(X,G), G) =
〈ψCp(X,G)(X)〉End(G). Now the conclusion of our theorem follows from Proposi-
tion 7.4. �

8. Application to G-equivalence

Theorem 8.1. Let G be a nontrivial abelian separable metrizable pathwise con-

nected group. Assume that every µ ∈ Homp(Cp(X,G), G) is finitely supported for

every Tychonoff space X . Then G-equivalence preserves the covering dimension.

Proof: Let X be a Tychonoff space. Since G is pathwise connected and nontrivi-
al,X isG⋆⋆-regular [12, Proposition 2.3(i)]. By Theorem 7.10, Homp(Cp(X,G), G)
is the free topological module over X in the class M = {G}End(G) of topological

End(G)-modules.
Clearly, M is End(G)-closed. Since G is pathwise connected, the closed unit

interval is M -Hausdorff.
Suppose that Z is a space with a countable base. It is well known that

nw(Cp(X,Y )) ≤ nw(X) for every space Y with a countable base. Applying this
fact twice, we conclude that both Cp(Z,G) and Cp(Cp(Z,G), G) have a countable
network. Since Homp(Cp(Z,G), G) is a subspace of Cp(Cp(Z,G), G), it follows
that Homp(Cp(Z,G), G) has a countable network.

From Theorem 6.1 we conclude that dimX = dimY wheneverX and Y are Ty-
chonoff spaces such that Homp(Cp(X,G), G) is topologically End(G)-isomorphic



394 Spěvák J.

to Homp(Cp(Y,G), G). Finally, it remains to observe that if X and Y are G-
equivalent, that is, Cp(X,G) and Cp(Y,G) are topologically isomorphic, then
Homp(Cp(X,G), G) and Homp(Cp(Y,G), G) are topologically End(G)-isomorphic.

�

Next we will present some classes of topological groups G for which the condi-
tion that every µ ∈ Homp(Cp(X,G), G) is finitely supported for every Tychonoff
space X is satisfied. The following definition comes from [8].

Definition 8.2. We say that a topological group G is self-slender provided that
for every set X and each continuous homomorphism µ : GX → G there exist
a finite set K ⊆ X and a continuous homomorphism ϕ : GK → G such that
µ = ϕ ◦ πK , where πK : GX → GK is the projection.

Lemma 8.3. A topological group G is self-slender if and only if each continuous

homomorphism φ : GX → G is finitely supported for every set X .

Proof: Fix a set X and a continuous homomorphism φ : GX → G. If G is
self-slender, then there exist some finite K ⊆ X and a continuous homomorphism
ϕ : GK → G such that φ = ϕ ◦ πK . Obviously, K ∈ S(φ) and thus φ is finitely
supported. On the other hand, if φ is finitely supported, then there is some finite
K ∈ S(φ). For every f ∈ GK pick f ′ ∈ GX such that πK(f ′) = f , and define
ϕ(f) = φ(f ′). Since K ∈ S(φ), it follows from Lemma 7.7 that ϕ : GK → G is a
well-defined homomorphism. Obviously, φ = ϕ◦πK . It remains to observe that ϕ
is continuous. For every V ⊆ G we have ϕ−1(V ) = πK(φ−1(V )). Consequently,
the continuity of ϕ follows from the continuity of φ and from the fact that πK is
an open mapping. �

Recall that a topological group is called NSS provided that there exists a
neighborhood of the identity containing no nontrivial subgroup.

Lemma 8.4. Let G be a topological group, X be a set and H be a subgroup of

GX such that one of the following conditions hold:

(i) G is NSS,

(ii) the Raikov completion Ĝ of G is self-slender and H is dense in GX .

Then every µ ∈ Hom(H,G) is finitely supported.

Proof: Assume that (i) holds.
Fix µ ∈ Hom(H,G) and a neighborhood U of the identity e in G containing no

nontrivial subgroup. Since µ is continuous, there exist a finite set K ⊆ X and an
open neighborhood V ⊆ G of e such that for A = {f ∈ H : f(K) ⊆ V } we have
µ(A) ⊆ U . We claim that K ∈ S(µ). Indeed, if g ∈ H satisfies g(K) ⊆ {e}, then
gz ∈ A, and consequently, µ(g)z ⊆ U for every z ∈ Z. In other words, U contains
the subgroup generated by µ(g). Therefore µ(g) = e. It follows that K ∈ S(µ).

Suppose now that (ii) holds. Since H is dense in GX , it follows that Ĥ = ĜX .

Pick µ ∈ Hom(H,G) and take the unique continuous homomorphism µ̂ : ĜX → Ĝ
extending µ. Then µ̂ is finitely supported by Lemma 8.3. Obviously, µ = µ̂ ↾H is
finitely supported as well. �



Module-valued functors preserving the covering dimension 395

Theorem 8.5. Let G be a nontrivial abelian separable metrizable pathwise con-

nected group. Assume that G is either an NSS group or the completion Ĝ of G
is self-slender. Then G-equivalence preserves the covering dimension.

Proof: If G is NSS, then every µ ∈ Homp(Cp(X,G), G) is finitely supported for
every Tychonoff spaceX by Lemma 8.4. If the completion ofG is self-slender, then
Cp(X,G) is dense in GX for every Tychonoff space X by Lemma 7.9. Here we are
using the fact that every Tychonoff space isG⋆⋆-regular becauseG is pathwise con-
nected. Therefore, by Lemma 8.4 also in this case every µ ∈ Homp(Cp(X,G), G)
is finitely supported for every Tychonoff space X . Thus, the conclusion follows
from Theorem 8.1. �

Since R is an NSS, pathwise connected, separable metrizable, abelian group,
Theorem 8.5 implies the following result of Pestov [10].

Corollary 8.6 (Pestov). The covering dimension is preserved by l-equivalence.

9. Further generalizations

If H is a subgroup of a topological group G, then Cp(X,H) is a subgroup
of Cp(X,G) for every space X . If we succeed to prove that each topological
isomorphism between Cp(X,G) and Cp(Y,G) must map Cp(X,H) onto Cp(Y,H),
then this would mean that G-equivalence implies H-equivalence. This usually
happens when H is a “significant” subgroup of G, for example, its center or
(arcwise) connected component.

Recall that the set Z(G) = {g ∈ G : gh = hg for every h ∈ G} is called the
center of a group G. Obviously, Z(G) is an abelian subgroup of G.

Proposition 9.1. Let G be a topological group. Then G-equivalence implies

Z(G)-equivalence.

Proof: Assume that spaces X and Y are G-equivalent, and let ϕ : Cp(X,G) →
Cp(Y,G) be a topological isomorphism. One can easily check that Z(Cp(X,G)) =
Cp(X,Z(G)) and Z(Cp(Y,G)) = Cp(Y, Z(G)). Since an isomorphism between
topological groups maps the center onto the center, we must have ϕ(Cp(X,Z(G)))
= Cp(Y, Z(G)). Thus, X and Y are Z(G)-equivalent. �

Given a topological group G, we denote by c(G) the connected component of
the identity of G and by c0(G) the pathwise connected component of the identity
of G. Recall that both, c(G) and c0(G) are topological subgroups of G.

If X is a topological space and A ⊆ X , then by ClX(A) we will denote the
closure of A in X .

Proposition 9.2. Let X be a space and G a topological group. Then

ClCp(X,G)(c0(Cp(X,G))) = Cp(X,ClG(c0(G))).
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Proof: First let us prove the inclusion “⊆”. Pick f ∈ ClCp(X,G)(c0(Cp(X,G)))
and x ∈ X . Let π : Cp(X,G) → G be the projection at x. Since a continuous im-
age of a pathwise connected space is pathwise connected and π is continuous, it fol-
lows that π(c0(Cp(X,G))) ⊆ c0(G) and consequently, π(ClCp(X,G)(c0(Cp(X,G))))
⊆ ClG(c0(G)). Thus, f ∈ Cp(X,ClG(c0(G))).

To show the reverse inclusion “⊇”, fix f ∈ Cp(X,ClG(c0(G))), and let O
be an open neighborhood of f in Cp(X,ClG(c0(G))). We must show that O ∩
c0(Cp(X,G)) 6= ∅. There exist n ∈ N, pairwise distinct elements x1, . . . , xn ∈ X
and a sequence U1, . . . , Un of open subsets of ClG(c0(G)) with

(3) f ∈
n⋂

i=1

W (xi, Ui) ⊆ O,

where W (xi, Ui) = {g ∈ C(X,ClG(c0(G))) : g(xi) ∈ Ui}. Fix an integer i satisfy-
ing 1 ≤ i ≤ n. From (3) it follows that Ui ⊆ ClG(c0(G)) is nonempty. Thus we can
choose gi ∈ Ui ∩ c0(G). Therefore, there exists a continuous map ϕi : [0, 1] → G
such that

(4) ϕi(0) = e and ϕi(1) = gi.

Let ψi : X → [0, 1] be a continuous function such that

(5) ψi(xi) = 1 and ψi(xj) = 0 for every j ∈ {1, . . . , n} with j 6= i.

Let ϕ : [0, 1] → Cp(X,G) be the map which assigns to every t ∈ [0, 1] the
function ϕ(t) ∈ Cp(X,G) defined by

(6) ϕ(t)(x) =

n∏

i=1

ϕi(tψi(x)) for x ∈ X.

From (4) and (6) we conclude that ϕ(0) is the identity element of Cp(X,G). One
can easily check that ϕ is continuous, so ϕ([0, 1]) is a path between ϕ(0) = e and
h = ϕ(1) ∈ Cp(X,G). Therefore, h ∈ c0(Cp(X,G)). Finally, from (4), (5) and
(6) we conclude that h(xi) = gi ∈ Ui for every integer i with 1 ≤ i ≤ n. That
is, h ∈

⋂n
i=1W (xi, Ui). Combining this with (3), we conclude that h ∈ O. Hence

h ∈ O ∩ c0(Cp(X,G)) 6= ∅. �

Since a closure of a subgroup of a topological group G is again a subgroup of
G, it follows that ClG(c0(G)) is a subgroup of G.

Corollary 9.3. G-equivalence implies ClG(c0(G))-equivalence for every topolog-

ical group G.

Proof: Assume that spaces X and Y are G-equivalent, and let ϕ : Cp(X,G) →
Cp(Y,G) be a topological isomorphism. Since a topological isomorphism between
topological groups maps the pathwise connected component onto the pathwise
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connected component, we must have

ϕ(ClCp(X,G)(c0(Cp(X,G)))) = ClCp(Y,G)(c0(Cp(Y,G))).

From this and Proposition 9.2 we obtain that

Cp(X,ClG(c0(G))) = ClCp(X,G)(c0(Cp(X,G)))

∼= ClCp(Y,G)(c0(Cp(Y,G))) = Cp(Y,ClG(c0(G))).

Thus, X and Y are ClG(c0(G))-equivalent. �

Corollary 9.4. Let G be a topological group such that c0(G) is dense in c(G).
Then G-equivalence implies c(G)-equivalence.

Proof: Since c(G) is closed inG, from our assumption we get c(G) = ClG(c0(G)).
It remains to apply Corollary 9.3. �

Theorem 9.5. Let G be a topological group. Assume that c0(G) is closed in

G and c0(G) = Hκ, where κ is an arbitrary nonzero cardinal, and H is a non-

trivial abelian separable metrizable group that is either NSS, or has self-slender

completion. Then G-equivalence preserves the covering dimension.

Proof: It follows from Corollary 9.3 that G-equivalence implies c0(G)-equiva-
lence (that is, Hκ-equivalence). It follows from [12, Corollary 2.14] that Hκ-
equivalence preserves the covering dimension if and only if H-equivalence does.
Since Hκ is pathwise connected, so is H , and thus H-equivalence preserves di-
mension by Theorem 8.5. �

Remark 9.6. Examples of compact abelian self-slender groups that are not NSS
can be found in [2]. Therefore, conditions from items (i) and (ii) of Lemma 8.4, as
well as the corresponding assumptions in Corollary 8.5 and Theorem 9.5, cannot
be “merged” into a single general statement.

Remark 9.7. In [12] we presented some classes G ,H of topological groups for
which G-equivalence implies H-equivalence whenever G ∈ G and H ∈ H . Using
these results as well as Proposition 9.1 together with Theorem 9.5 can result
into extending the class of topological groups G for which it is known that G-
equivalence preserves the covering dimension.

10. Final remarks

Given a spaceX (no separation axioms are assumed) and a topological groupG,
we say that X is G-Tychonoff provided that it can be embedded in some power
of G. Consider the image of X under the diagonal product rG of all maps f ∈
C(X,G). A straightforward check shows that the map Ψ : Cp(rG(X), G) →
Cp(X,G) defined by Ψ(f) = f ◦ rG is a topological isomorphism. In particular,
X and rG(X) are G-equivalent. Obviously, rG(X) is always G-Tychonoff while
X is G-Tychonoff if and only if it is homeomorphic to rG(X). A reader familiar
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with the theory of categories can readily recognize that rG is a reflection of the
category of all topological spaces in the category of all G-Tychonoff spaces.

Let us give a simple example showing that the requirement on H to be non-
trivial in Theorem 9.5 cannot be omitted.

Example 10.1. Let G be the discrete two-point group Z(2). Then G is separable
metric and NSS but G-equivalence does not preserve dimension within the class
of compact metric spaces.

Indeed, for the closed unit interval I its reflection rG(I) is a singleton, be-
cause every continuous Z(2)-valued function on I is constant. Since rG(I) is
G-equivalent to I the conclusion follows.

The previous extreme example shows that in order to obtain meaningful the-
orems about preservation of dimension by G-equivalence we have to restrict our-
selves only to the class of G-Tychonoff spaces. Therefore, when investigating
the preservation of dimension by G-equivalence within the class of all Tychonoff
spaces it is reasonable to require all Tychonoff spaces to be G-Tychonoff which
happens if and only if I is G-Tychonoff if and only if c0(G) is nontrivial.

Question 10.2. (i) Can “separable metrizable” be omitted in Theorem 8.5
and Theorem 9.5?

(ii) Does G-equivalence preserve the covering dimension for every NSS abelian
group G within the class of G-Tychonoff spaces?

(iii) Does G-equivalence preserve the covering dimension for every compact
self-slender abelian group G within the class of G-Tychonoff spaces?

(iv) Can the assumption that c0(G) is closed be omitted in Theorem 9.5?

Acknowledgment. I would like to thank Dmitri Shakhmatov for providing me
with generous advices resulting in a better exposition of this paper. Further, I
would like to thank Taras Banakh for letting me know about the recent paper [7].

References

[1] Arhangel’skĭı A.V., The principle of T approximation and a test for equality of dimension

of compact Hausdorff spaces (Russian), Dokl. Akad. Nauk SSSR 252 (1980), no. 4, 777-780.
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